study from : https://blog.****.net/mitsuha_/article/details/81774727
k较小。分离x和k。
另外的可能:求a[k][x],x不确定,想到的是求sum(a[k][1]+a[k][2]+...+a[k][x]),树状数组 sum(x)-sum(x-1)。这题用不上。
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <string>
#include <algorithm>
#include <set>
#include <map>
#include <queue>
#include <iostream>
using namespace std; #define ll long long const int maxn=1e5+;
const int maxk=+;
const int inf=1e9;
const ll mod=1e9+;
const double eps=1e-; ll f[maxk][maxn],mul[maxn],chu[maxn];
int n,k; ll C(int x,int y)
{
if (x<)
{
x=y--x;
return (y&?-:)*mul[x]*chu[x-y]%mod*chu[y]%mod;
}
if (x<y)
return ;
return mul[x]*chu[x-y]%mod*chu[y]%mod;
} ll _pow(ll a,ll b)
{
ll y=;
while (b)
{
if (b &)
y=y*a%mod;
a=a*a%mod;
b>>=;
}
return y;
} void update(int x,ll y,int j)
{
while (x<=n)
{
f[j][x]=(f[j][x]+y)%mod;
x+=x&-x;
}
} ll cal(int x,int j)
{
ll sum=;
while (x)
{
sum=(sum+f[j][x])%mod;
x-=x&-x;
}
return sum;
} int main()
{
int m,i,j,mode,x;
ll sum=,y;
scanf("%d%d%d",&n,&m,&k);
k--;
mul[]=;
for (i=;i<=n;i++)
mul[i]=mul[i-]*i%mod;
chu[n]=_pow(mul[n],mod-);
for (i=n-;i>=;i--)
chu[i]=chu[i+]*(i+)%mod;
while (m--)
{
scanf("%d",&mode);
if (mode)
{
scanf("%d",&x);
sum=;
for (j=;j<=k;j++)
sum=(sum+C(x,j)*cal(x,j))%mod;
printf("%lld\n",sum);
}
else
{
scanf("%d%lld",&x,&y);
for (j=;j<=k;j++)
update(x,C(k-x,k-j)*y%mod,j);
}
}
return ;
}
/*
4 11 3
0 3 1
1 4
*/
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <string>
#include <algorithm>
#include <set>
#include <map>
#include <queue>
#include <iostream>
using namespace std; #define ll long long const int maxn=1e5+;
const int inf=1e9;
const double eps=1e-;
const ll mod=1e9+; ll mul[maxn<<],chu[maxn<<]; ll _pow(ll a,ll b)
{
ll y=;
while (b)
{
if (b&)
y=y*a%mod;
a=a*a%mod;
b>>=;
}
return y;
} ll C(ll x,ll y)
{
return mul[x]*chu[x-y]%mod*chu[y]%mod;
} int main()
{
int n,i,j,a;
scanf("%d",&n);
mul[]=;
for (i=;i<=*n;i++)
mul[i]=mul[i-]*i%mod;
chu[*n]=_pow(mul[*n],mod-);
for (i=*n-;i>=;i--)
chu[i]=chu[i+]*(i+)%mod;
i=,j=;
while (~scanf("%d",&a))
{
printf("%lld\n",_pow(,+i+j)*C(*n--i-j,n-i-)%mod);
i+=(a==),j+=(a==);
}
return ;
}
/* */