Educational Codeforces Round 63 (Rated for Div. 2) D. Beautiful Array(动态规划.递推)

时间:2022-01-11 23:43:14

传送门

题意:

  给你一个包含 n 个元素的序列 a[];

  定义序列 a[] 的 beauty 为序列 a[] 的连续区间的加和最大值,如果全为负数,则 beauty = 0;

  例如:

  a[] = {10, -5, 10, -4, 1} ;

  beauty = 15;( 10+(-5)+10 )

  a[] = {-3, -5, -1};

  beauty = 0;( 不取 )

  给你一个整数 x,你可以将序列 a[] 的任意子序列 a[ l , r ]*x(即 a[l]=a[l]*x,a[l+1]=a[l+1]*x,.....,a[r]=a[r]*x);

  当然,也可以不执行这个操作;

  求 beauty 的最大值;

思路:

  一看到这道题,第一反应就贪过去了;

  贪了好大一会,交了几发程序,全部 "Wrong answer on test 5";

  看了一眼他人的AC代码,看到了 dp 数组,然后,想了好久好久的动态规划解法;

  wa 了改,改了 wa,终于,在下午临近吃饭的时候,AC了(大佬轻点虐)

  Educational Codeforces Round 63 (Rated for Div. 2) D. Beautiful Array(动态规划.递推)

  假设修改的区间为[ L,R ]

  那么,对于∀i∈[1,n], i = L or L < i < R or i = R;

  定义 dp[ i ][ j ],含义如下:

  j = 0 : i 作为修改区间的起始位置,从 i 开始向左能形成的最大区间和;

  j = 1 : i 作为修改区间的中间位置,从 i 开始向左能形成的最大区间和;

  j = 2 : i 作为修改区间的终点位置,i 可以形成的最大区间和;

 #include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
#define INFll 0x3f3f3f3f3f3f3f3f
#define ll long long
#define mem(a,b) memset(a,b,sizeof(a))
const int maxn=3e5+; int n,x;
ll a[maxn];
/**
在做*x的操作下
dp[i][0]:i位置为修改区间的开始
dp[i][1]:i位置为修改区间的中间部分
dp[i][2]:i位置为修改区间的结尾
*/
ll dp[maxn][];
/**
在不做*x的操作下
maxL[i]:以i开始的向左能形成的最大的区间和
maxR[i]:以i开始的向右能形成的最大的区间和
*/
ll maxL[maxn];
ll maxR[maxn]; ll Solve()
{
maxL[]=-INFll;
for(int i=;i <= n;++i)
maxL[i]=max(maxL[i-]+a[i],a[i]);
maxR[n+]=-INFll;
for(int i=n;i >= ;--i)
maxR[i]=max(maxR[i+]+a[i],a[i]); dp[][]=dp[][]=;
for(int i=;i <= n;++i)
{
dp[i][]=x*a[i]+(maxL[i-] > ? maxL[i-]:);
dp[i][]=max(dp[i-][],dp[i-][])+x*a[i];
dp[i][]=max(dp[i][],dp[i][])+(maxR[i+] > ? maxR[i+]:);
} ll ans=;
for(int i=;i <= n;++i)
ans=max(max(ans,maxL[i]),dp[i][]); return ans;
}
int main()
{
while(~scanf("%d%d",&n,&x))
{
for(int i=;i <= n;++i)
scanf("%lld",a+i);
printf("%I64d\n",Solve());
}
}

巨巨代码(额外增加点我的注释)

 #include<bits/stdc++.h>
using namespace std;
#define mem(a,b) memset(a,b,sizeof(a))
#define ll long long int n,x;
ll a[];
ll dp[][]; int main()
{
ll ans=;
cin>>n>>x;
for(int i=;i<=n;++i)
cin>>a[i]; mem(dp[],);
/**
dp[i][0]:[1,i]未使用*x所形成的最大区间和
dp[i][1]:[L,i-1]使用*x,并且i也使用*x所形成的最大区间和
dp[i][2]:[L,i-1]使用*x,但是i不使用*x所形成的最大区间和
*/
for(int i=;i<=n;++i)
{
dp[i][]=a[i]+(dp[i-][] > ? dp[i-][]:);
dp[i][]=max(0LL,max(dp[i-][],dp[i-][]))+a[i]*x;
dp[i][]=max(0LL,max(dp[i-][],dp[i-][]))+a[i];
for(int j=;j<;++j)//三者去最值
ans=max(ans,dp[i][j]);
}
cout<<ans<<endl; return ;
}