原文链接https://www.cnblogs.com/zhouzhendong/p/ARC102D.html
题目传送门 - ARC102D
题意
给定 $L$,请你构造一个节点个数为 $n$ ,边数为 $m$ 的图,边带权,满足以下条件:
1. $n\leq 20$
2. $m\leq 60$
3. 如果有向边 $a\rightarrow b$ 存在,那么 $a<b$ 。
4. 从 $1$ 走到 $n$ 总共有 $L$ 种不同的路径,这 $L$ 条路径的长度分别为 $0,1,\cdots , L-1$ 。
$L\leq 10^6$
题解
垃圾翻译告诉我 $n\geq 20$ 。于是我立马构造了一个 $40$ 个点的图来满足。在看样例的时候,我发现读错了题目。
然后我就一直在想如何用 $2^k$ 的边权来构造。不知道为什么我只在想用这种边权构造。
然后我扔掉这种做法想出了一个 AC 做法,5分钟敲完 AC 了。赛后,Funtionendless 给我讲了一下他口胡的做法,然而我发现和我之前想的假做法好像,说他是错的;然后最后我发现我…… 于是我又知道了一种做法。
由于这两种做法的正确性都比较显然,所以不加解释。
做法1:by me
build(x,L){//以x为当前子图的最小标号节点,构造一个具有 [0,L] 的路径长度的图
if (L==0){
AddEdge(x,n,0);
return;
}
if (L==1){
AddEdge(x,n,0);
AddEdge(x,n,1);
return;
}
y=NewNode();
if (L mod 2==0)
AddEdge(x,n,L);
if (L mod 2==0)
L=L div 2-1;
else
L=L div 2;
AddEdge(x,y,0);
AddEdge(x,y,L);
build(y,L);
}
做法2:by Funtionendless
int calc(int x,int i){//以x为当前子图的最小标号节点,构造一个具有 [0,L) 的路径长度的图
return x&~((1<<(i+1))-1);
}
int GetD(int x,int i){
return x的i次二进制位;
}
n=20;
build(x,L){
for (i = 0 to 18){
AddEdge(i+1,i+2,Pow(2,i));
AddEdge(i+1,i+2,0);
}
if (GetD(0))
AddEdge(1,n,calc(L,0));
for (i = 1 to 19)
if (GetD(L,i)==1)
AddEdge(i,n,calc(L,i));
}
代码
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N=105;
LL read(){
LL x=0,f=1;
char ch=getchar();
while (!isdigit(ch)&&ch!='-')
ch=getchar();
if (ch=='-')
f=-1,ch=getchar();
while (isdigit(ch))
x=(x<<1)+(x<<3)+ch-48,ch=getchar();
return x*f;
}
int n,m=0,L;
int A[N],B[N],C[N];
void push(int a,int b,int c){
m++;
A[m]=a;
B[m]=b;
C[m]=c;
}
int main(){
L=read()-1;
n=20;
int cnt=1;
while (L>=0){
if (L==0){
if (cnt<n)
push(cnt,n,0);
break;
}
if (L==1){
push(cnt,n,0);
push(cnt,n,1);
break;
}
if (L%2==0)
push(cnt,n,L);
L=(L+1)/2;
push(cnt,cnt+1,0);
push(cnt,cnt+1,L);
L--;
cnt++;
}
printf("%d %d\n",n,m);
for (int i=1;i<=m;i++)
printf("%d %d %d\n",A[i],B[i],C[i]);
return 0;
}