HDU 2883 kebab
题意:有一个烧烤机,每次最多能烤 m 块肉。如今有 n 个人来买烤肉,每一个人到达时间为 si。离开时间为 ei,点的烤肉数量为 ci,每一个烤肉所需烘烤时间为 di。注意一个烤肉能够切成几份来烤
思路:把区间每一个点存起来排序后。得到最多2 * n - 1个区间,这些就表示几个互相不干扰的时间,每一个时间内仅仅可能有一个任务器做。这样建模就简单了。源点连向汇点,容量为任务须要总时间,区间连向汇点,容量为区间长度。然后每一个任务假设包括了某个区间,之间就连边容量无限大。最后推断一下最大流是否等于总任务须要时间就可以
代码:
#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
using namespace std; const int MAXNODE = 1005;
const int MAXEDGE = 200005; typedef int Type;
const Type INF = 0x3f3f3f3f; struct Edge {
int u, v;
Type cap, flow;
Edge() {}
Edge(int u, int v, Type cap, Type flow) {
this->u = u;
this->v = v;
this->cap = cap;
this->flow = flow;
}
}; struct Dinic {
int n, m, s, t;
Edge edges[MAXEDGE];
int first[MAXNODE];
int next[MAXEDGE];
bool vis[MAXNODE];
Type d[MAXNODE];
int cur[MAXNODE];
vector<int> cut; void init(int n) {
this->n = n;
memset(first, -1, sizeof(first));
m = 0;
}
void add_Edge(int u, int v, Type cap) {
edges[m] = Edge(u, v, cap, 0);
next[m] = first[u];
first[u] = m++;
edges[m] = Edge(v, u, 0, 0);
next[m] = first[v];
first[v] = m++;
} bool bfs() {
memset(vis, false, sizeof(vis));
queue<int> Q;
Q.push(s);
d[s] = 0;
vis[s] = true;
while (!Q.empty()) {
int u = Q.front(); Q.pop();
for (int i = first[u]; i != -1; i = next[i]) {
Edge& e = edges[i];
if (!vis[e.v] && e.cap > e.flow) {
vis[e.v] = true;
d[e.v] = d[u] + 1;
Q.push(e.v);
}
}
}
return vis[t];
} Type dfs(int u, Type a) {
if (u == t || a == 0) return a;
Type flow = 0, f;
for (int &i = cur[u]; i != -1; i = next[i]) {
Edge& e = edges[i];
if (d[u] + 1 == d[e.v] && (f = dfs(e.v, min(a, e.cap - e.flow))) > 0) {
e.flow += f;
edges[i^1].flow -= f;
flow += f;
a -= f;
if (a == 0) break;
}
}
return flow;
} Type Maxflow(int s, int t) {
this->s = s; this->t = t;
Type flow = 0;
while (bfs()) {
for (int i = 0; i < n; i++)
cur[i] = first[i];
flow += dfs(s, INF);
}
return flow;
} void MinCut() {
cut.clear();
for (int i = 0; i < m; i += 2) {
if (vis[edges[i].u] && !vis[edges[i].v])
cut.push_back(i);
}
}
} gao; const int N = 405; int n, m; struct Man {
int l, r;
} man[N]; int p[N], pn; int s, nu, e, t; int main() {
while (~scanf("%d%d", &n, &m)) {
gao.init(3 * n + 2);
pn = 0;
int sum = 0;
for (int i = 1; i <= n; i++) {
scanf("%d%d%d%d", &s, &nu, &e, &t);
man[i].l = s; man[i].r = e;
p[pn++] = s; p[pn++] = e;
sum += nu * t;
gao.add_Edge(0, i, nu * t);
}
sort(p, p + pn);
for (int i = 1; i < pn; i++)
gao.add_Edge(n + i, 3 * n + 1, (p[i] - p[i - 1]) * m);
for (int i = 1; i <= n; i++) {
for (int j = 1; j < pn; j++) {
if (p[j - 1] > man[i].r) break;
if (man[i].l <= p[j - 1] && man[i].r >= p[j])
gao.add_Edge(i, j + n, INF);
}
}
printf("%s\n", gao.Maxflow(0, 3 * n + 1) == sum ? "Yes" : "No");
}
return 0;
}