Michael-Scott非阻塞队列(lock-free)算法的C实现

时间:2023-07-26 13:56:14

Michael-Scott非阻塞队列算法,即MS-queue算法,是1 9 9 6 年由Maged . M .Michael and M. L. Scott提出的,是最为经典的并发FIFO队列上的算法,目前很多对并发FIFO队列的研究都是基于这个算法来加以改进的。在共享内存的多核处理器上,这种基于Compare-and-swap(CAS)的算法在性能上要远远优于以前基于锁的算法,并且已经被Java并发包所采用。它的主要特点在于允许多线程并发的、无干扰的访问队列的头和尾。

MS-queue算法依赖于CAS原子操作,CAS操作是与处理器体系结构有关的,GCC中已经提供了内建的CAS相关的API,具体参见这里

bool __sync_bool_compare_and_swap (type *ptr, type oldval, type newval, ...);
type __sync_val_compare_and_swap (type *ptr, type oldval, type newval, ...);
/* 对应的伪代码 */
{ if (*ptr == oldval) { *ptr = newval; return true; } else { return false; } }
{ if (*ptr == oldval) { *ptr = newval; } return oldval; }

与CAS API一起的,还包括另一组自增、自减、与、或、非、异或原子操作的API。

type __sync_fetch_and_add(type *ptr, type value, ...); // m+n
type __sync_fetch_and_sub(type *ptr, type value, ...); // m-n
type __sync_fetch_and_or(type *ptr, type value, ...); // m|n
type __sync_fetch_and_and(type *ptr, type value, ...); // m&n
type __sync_fetch_and_xor(type *ptr, type value, ...); // m^n
type __sync_fetch_and_nand(type *ptr, type value, ...); // (~m)&n
/* 对应的伪代码 */
{ tmp = *ptr; *ptr op= value; return tmp; }
{ tmp = *ptr; *ptr = (~tmp) & value; return tmp; } // nand

使用这组API有很多好处,比如C/C++中自增自减及赋值操作都不是原子操作,如果是多线程程序需要使用全局计数器,程序就需要使用锁或者互斥量,对于较高并发的程序,会造成一定的性能瓶颈。而通过使用这组API,GCC通过在汇编级别的代码来保证赋值类操作的原子性,相对于涉及到操作系统系统调用和应用层同步的锁和互斥量,这组api的效率要高很多。

言归正传,回到MS-queue无锁(lock-free)队列上来。虽说MS-queue已经是大名鼎鼎了,不过找一个现成的C实现貌似还真不容易,C++的实现这里已经有了,是基于Boost的。另一个是复旦大学一个研究组的实现(这里),不过主要是针对64位机,CAS原语直接用汇编指令搞定的,觉得直接在32位下用或arm的GCC编译下会有问题。由于平时的项目开发用的基本是GCC编译器或arm的GCC,因此,自己实现了一个适用于32位机的、采用GCC内置CAS API的MS-queue。
ms_queue.h:

/*
** This file defines necessary data structures to implement a lock-free FIFO
** queue.
**
** Which is described in Michael and Scott's excellent paper appeared in PODC
** '96: "Simple, Fast, and Practical Non-Blocking and Blocking Concurrent Queue
** Algorithms"
**
** Author: Jingcheng Li <jcli.china@gmail.com>
**
**/ #define __GNU_SOURCE
#include <stdlib.h>
#include <stdint.h> #define CAS __sync_bool_compare_and_swap typedef int data_type;
typedef struct queue_t queue_t;
typedef struct pointer_t pointer_t;
typedef struct node_t node_t; struct node_t; struct pointer_t {
node_t* ptr;
uint32_t count;
}; struct node_t {
data_type value;
pointer_t next;
}; struct queue_t {
pointer_t Head;
pointer_t Tail;
}; void initialize(queue_t *q)
{
node_t *node = NULL; node = malloc(sizeof(node_t));
node->next.ptr = NULL;
q->Head.ptr = q->Tail.ptr = node;
} void enqueue(queue_t* q, data_type value){
node_t *node = NULL;
pointer_t old_tail, tail, next, tmp; node = malloc(sizeof(node_t));
node->value = value;
node->next.ptr = NULL; while()
{
tail = q->Tail;
old_tail = tail;
next = tail.ptr->next;
/* tail may be changed in CAS after compare but before assign to q->Tail,
* so this is incorrect:
if (CAS((uint64_t*)&q->Tail, *(uint64_t*)&tail, *(uint64_t*)&old_tail))
this is correct:
if (CAS((uint64_t*)&q->Tail, *(uint64_t*)&tail, *(uint64_t*)&tail))
*/
if (CAS((uint64_t*)&q->Tail, *(const uint64_t*)&tail, *(const uint64_t*)&tail))
{
if (next.ptr == NULL)
{
tmp.ptr = node;
tmp.count = next.count+;
if (CAS((uint64_t*)&tail.ptr->next, *(const uint64_t*)&next, *(const uint64_t*)&tmp))
{
break;
}
}
else
{
tmp.ptr = next.ptr;
tmp.count = tail.count+;
CAS((uint64_t*)&q->Tail, *(const uint64_t*)&tail, *(const uint64_t*)&tmp);
}
}
} tmp.ptr = node;
tmp.count = tail.count+;
CAS((uint64_t*)&q->Tail, *(const uint64_t*)&tail, *(const uint64_t*)&tmp);
} int dequeue(queue_t *q, data_type* pvalue)
{
pointer_t old_head, head, tail, next, tmp;
while()
{
head = q->Head;
old_head = head;
tail = q->Tail;
next = head.ptr->next; /* head may be changed in CAS after compare but before assign to q->Head,
* so this is incorrect:
if (CAS((uint64_t*)&q->Head, *(uint64_t*)&head, *(uint64_t*)&old_head))
this is correct:
if (CAS((uint64_t*)&q->Head, *(uint64_t*)&head, *(uint64_t*)&head))
*/
if (CAS((uint64_t*)&q->Head, *(const uint64_t*)&head, *(const uint64_t*)&head))
{
if (head.ptr == tail.ptr)
{
if (next.ptr == NULL)
{
return ;
}
tmp.ptr = next.ptr;
tmp.count = tail.count+;
CAS((uint64_t*)&q->Tail, *(const uint64_t*)&tail, *(const uint64_t*)&tmp);
}
else
{
if (pvalue)
{
*pvalue = next.ptr->value;
}
tmp.ptr = next.ptr;
tmp.count = head.count+;
if (CAS((uint64_t*)&q->Head, *(const uint64_t*)&head, *(const uint64_t*)&tmp))
{
break;
}
}
}
} free(head.ptr);
return ;
}

test_queue.c:

#include <stdio.h>
#include <assert.h>
#include "ms_queue.h" pthread_t a_id[];
pthread_t b_id[]; queue_t queue;
void* put(void* a)
{
int i = , j;
int n = (int)a; for(j = n*; j<(n+)*; j++)
{
enqueue(&queue, j);
}
printf("put thread: %d exit\n", n);
} void* get(void* a)
{
int v;
int n = (int)a;
int cnt = ;
while(cnt--)
{
while( == dequeue(&queue, &v))
{
usleep();
}
}
printf("get thread: %d exit\n", n);
} int main()
{
int i, j;
initialize(&queue);
assert(NULL != queue.Head.ptr);
assert(NULL != queue.Tail.ptr);
for ( i = ; i < ; i++ )
{
pthread_create(&a_id[i], NULL, put, i);
pthread_create(&b_id[i], NULL, get, i);
} for ( i = ; i < ; i++ )
{
pthread_join(a_id[i], NULL);
pthread_join(b_id[i], NULL);
} assert( == dequeue(&queue, &j));
}