tenserflow建立网络由于先建立静态的graph,所以没有数据,用placeholder来占位好申请内存。
那么keras的layer类其实是一个方便的直接帮你建立深度网络中的layer的类。
该类继承了object,是个基础的类,后续的诸如input_layer类都会继承与layer
由于model.py中利用这个方法建立网络,所以仔细看一下:他的说明详尽而丰富。
input()这个方法是用来初始化一个keras tensor的,tensor说白了就是个数组。他强大到之通过输入和输出就能建立一个keras模型。shape或者batch shape 必须只能给一个。shape = [None,None,None],会创建一个?*?*?的三维数组。
下面还举了个例子,a,b,c都是keras的tensor, `model = Model(input=[a, b], output=c)`
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
|
def Input (shape = None , batch_shape = None ,
name = None , dtype = None , sparse = False ,
tensor = None ):
"""`Input()` is used to instantiate a Keras tensor.
A Keras tensor is a tensor object from the underlying backend
(Theano, TensorFlow or CNTK), which we augment with certain
attributes that allow us to build a Keras model
just by knowing the inputs and outputs of the model.
For instance, if a, b and c are Keras tensors,
it becomes possible to do:
`model = Model(input=[a, b], output=c)`
The added Keras attributes are:
`_keras_shape`: Integer shape tuple propagated
via Keras-side shape inference.
`_keras_history`: Last layer applied to the tensor.
the entire layer graph is retrievable from that layer,
recursively.
# Arguments
shape: A shape tuple (integer), not including the batch size.
For instance, `shape=(32,)` indicates that the expected input
will be batches of 32-dimensional vectors.
batch_shape: A shape tuple (integer), including the batch size.
For instance, `batch_shape=(10, 32)` indicates that
the expected input will be batches of 10 32-dimensional vectors.
`batch_shape=(None, 32)` indicates batches of an arbitrary number
of 32-dimensional vectors.
name: An optional name string for the layer.
Should be unique in a model (do not reuse the same name twice).
It will be autogenerated if it isn't provided.
dtype: The data type expected by the input, as a string
(`float32`, `float64`, `int32`...)
sparse: A boolean specifying whether the placeholder
to be created is sparse.
tensor: Optional existing tensor to wrap into the `Input` layer.
If set, the layer will not create a placeholder tensor.
# Returns
A tensor.
# Example
```python
# this is a logistic regression in Keras
x = Input(shape=(32,))
y = Dense(16, activation='softmax')(x)
model = Model(x, y)
```
"""
|
tip:我们在model.py中用到了shape这个attribute,
1
2
3
4
|
input_image = KL. Input (
shape = [ None , None , config.IMAGE_SHAPE[ 2 ]], name = "input_image" )
input_image_meta = KL. Input (shape = [config.IMAGE_META_SIZE],
name = "input_image_meta" )
|
阅读input()里面的句子逻辑:
可以发现,进入if语句的情况是batch_shape不为空,并且tensor为空,此时进入if,用assert判断如果shape不为空,那么久会有错误提示,告诉你要么输入shape 要么输入batch_shape, 还提示你shape不包含batch个数,就是一个batch包含多少张图片。
那么其实如果tensor不空的话,我们可以发现,也会弹出这个提示,但是作者没有写这种题型,感觉有点没有安全感。注意点好了
1
2
3
4
5
|
if not batch_shape and tensor is None :
assert shape is not None , ( 'Please provide to Input either a `shape`'
' or a `batch_shape` argument. Note that '
'`shape` does not include the batch '
'dimension.' )
|
如果单纯的按照规定输入shape,举个例子:只将shape输入为None,也就是说tensor的dimension我都不知道,但我知道这是个向量,你看着办吧。
input_gt_class_ids = KL.Input(
shape=[None], name="input_gt_class_ids", dtype=tf.int32)
就会调用Input()函数中的这个判断句式,注意因为shape是个List,所以shape is not None 会返回true。同时有没有输入batch_shape的话,就会用shape的参数去创造一个batch_shape.
if shape is not None and not batch_shape:
batch_shape = (None,) + tuple(shape)
比如如果输入:
1
2
3
4
|
shape = ( None ,)
batch_shape = ( None ,) + shape
batch_shape
#会得到(None, None)
|
可以发现,这里要求使用者至少指明你的数据维度,比如图片的话,是三维的,所以shape至少是[None,None,None],而且我认为shape = [None,1] 与shape = [None]是一样的都会创建一个不知道长度的向量。
以上这篇keras.layer.input()用法说明就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.****.net/u013249853/article/details/88950943