微服务————RPC远程调用

时间:2024-03-17 20:41:57

【转载】:https://blog.csdn.net/haponchang/article/details/93468031


RPC 调用框架的三个部分

一个完整的 RPC 调用框架包含三个部分:

通信框架。它主要解决客户端和服务端如何建立连接、管理连接以及服务端如何处理请求的问题。

通信协议。它主要解决客户端和服务端采用哪种数据传输协议的问题。

序列化和反序列化。它主要解决客户端和服务端采用哪种数据编解码的问题。

通信框架提供了基础的通信能力,通信协议描述了通信契约,而序列化和反序列化则用于数据的编 / 解码。一个通信框架可以适配多种通信协议,也可以采用多种序列化和反序列化的格式,比如服务化框架 Dubbo 不仅支持 Dubbo 协议,还支持 RMI 协议、HTTP 协议等,而且还支持多种序列化和反序列化格式,比如 JSON、Hession 2.0 以及 Java 序列化等。

要完成一次服务调用,首先要解决的问题是服务消费者如何得到服务提供者的地址,其中注册中心扮演了关键角色,服务提供者把自己的地址登记到注册中心,服务消费者就可以查询注册中心得到服务提供者的地址,可以说注册中心犹如海上的一座灯塔,为服务消费者指引了前行的方向。

有了服务提供者的地址后,服务消费者就可以向这个地址发起请求了,但这时候也产生了一个新的问题。你知道,在单体应用时,一次服务调用发生在同一台机器上的同一个进程内部,也就是说调用发生在本机内部,因此也被叫作本地方法调用。在进行服务化拆分之后,服务提供者和服务消费者运行在两台不同物理机上的不同进程内,它们之间的调用相比于本地方法调用,可称之为远程方法调用,简称 RPC(Remote Procedure Call),那么RPC 调用是如何实现的呢?

RPC 调用的原理与此类似电话通话的过程,服务消费者叫作客户端,服务提供者叫作服务端,两者通常位于网络上两个不同的地址,要完成一次 RPC 调用,就必须先建立网络连接。建立连接后,双方还必须按照某种约定的协议进行网络通信,这个协议就是通信协议。双方能够正常通信后,服务端接收到请求时,需要以某种方式进行处理,处理成功后,把请求结果返回给客户端。为了减少传输的数据大小,还要对数据进行压缩,也就是对数据进行序列化。

 

 RPC 调用的过程需要解决四个问题:

客户端和服务端如何建立网络连接?

服务端如何处理请求?

数据传输采用什么协议?

数据该如何序列化和反序列化?

 

客户端和服务端如何建立网络连接?

客户端和服务端之间基于 TCP 协议建立网络连接最常用的途径有两种。

1. HTTP 通信

HTTP 通信是基于应用层 HTTP 协议的,而 HTTP 协议又是基于传输层 TCP 协议的。一次 HTTP 通信过程就是发起一次 HTTP 调用,而一次 HTTP 调用就会建立一个 TCP 连接,经历一次下图所示的“三次握手”的过程来建立连接。

完成请求后,再经历一次“四次挥手”的过程来断开连接。

2. Socket 通信

Socket 通信是基于 TCP/IP 协议的封装,建立一次 Socket 连接至少需要一对套接字,其中一个运行于客户端,称为 ClientSocket ;另一个运行于服务器端,称为 ServerSocket 。就像下图所描述的,Socket 通信的过程分为四个步骤:服务器监听、客户端请求、连接确认、数据传输。

服务器监听:ServerSocket 通过调用 bind() 函数绑定某个具体端口,然后调用 listen() 函数实时监控网络状态,等待客户端的连接请求。

客户端请求:ClientSocket 调用 connect() 函数向 ServerSocket 绑定的地址和端口发起连接请求。

服务端连接确认:当 ServerSocket 监听到或者接收到 ClientSocket 的连接请求时,调用 accept() 函数响应 ClientSocket 的请求,同客户端建立连接。

数据传输:当 ClientSocket 和 ServerSocket 建立连接后,ClientSocket 调用 send() 函数,ServerSocket 调用 receive() 函数,ServerSocket 处理完请求后,调用 send() 函数,ClientSocket 调用 receive() 函数,就可以得到得到返回结果。

微服务————RPC远程调用

当客户端和服务端建立网络连接后,就可以发起请求了。但网络不一定总是可靠的,经常会遇到网络闪断、连接超时、服务端宕机等各种异常,通常的处理手段有两种。

链路存活检测:客户端需要定时地发送心跳检测消息(一般是通过 ping 请求)给服务端,如果服务端连续 n 次心跳检测或者超过规定的时间都没有回复消息,则认为此时链路已经失效,这个时候客户端就需要重新与服务端建立连接。

断连重试:通常有多种情况会导致连接断开,比如客户端主动关闭、服务端宕机或者网络故障等。这个时候客户端就需要与服务端重新建立连接,但一般不能立刻完成重连,而是要等待固定的间隔后再发起重连,避免服务端的连接回收不及时,而客户端瞬间重连的请求太多而把服务端的连接数占满。

 

服务端如何处理请求?

假设这时候客户端和服务端已经建立了网络连接,服务端又该如何处理客户端的请求呢?通常来讲,有三种处理方式。

同步阻塞方式(BIO),客户端每发一次请求,服务端就生成一个线程去处理。当客户端同时发起的请求很多时,服务端需要创建很多的线程去处理每一个请求,如果达到了系统最大的线程数瓶颈,新来的请求就没法处理了。

同步非阻塞方式 (NIO),客户端每发一次请求,服务端并不是每次都创建一个新线程来处理,而是通过 I/O 多路复用技术进行处理。就是把多个 I/O 的阻塞复用到同一个 select 的阻塞上,从而使系统在单线程的情况下可以同时处理多个客户端请求。这种方式的优势是开销小,不用为每个请求创建一个线程,可以节省系统开销。

异步非阻塞方式(AIO),客户端只需要发起一个 I/O 操作然后立即返回,等 I/O 操作真正完成以后,客户端会得到 I/O 操作完成的通知,此时客户端只需要对数据进行处理就好了,不需要进行实际的 I/O 读写操作,因为真正的 I/O 读取或者写入操作已经由内核完成了。这种方式的优势是客户端无需等待,不存在阻塞等待问题。

 

不同的处理方式适用于不同的业务场景:

BIO 适用于连接数比较小的业务场景,这样的话不至于系统中没有可用线程去处理请求。这种方式写的程序也比较简单直观,易于理解。

NIO 适用于连接数比较多并且请求消耗比较轻的业务场景,比如聊天服务器。这种方式相比 BIO,相对来说编程比较复杂。

AIO 适用于连接数比较多而且请求消耗比较重的业务场景,比如涉及 I/O 操作的相册服务器。这种方式相比另外两种,编程难度最大,程序也不易于理解。

上面两个问题就是“通信框架”要解决的问题,你可以基于现有的 Socket 通信,在服务消费者和服务提供者之间建立网络连接,然后在服务提供者一侧基于 BIO、NIO 和 AIO 三种方式中的任意一种实现服务端请求处理,最后再花费一些精力去解决服务消费者和服务提供者之间的网络可靠性问题。这种方式对于 Socket 网络编程、多线程编程知识都要求比较高,建议最为稳妥的方式是使用成熟的开源方案,比如 Netty、MINA 等,它们都是经过业界大规模应用后,被充分论证是很可靠的方案。

假设客户端和服务端的连接已经建立了,服务端也能正确地处理请求了,接下来完成一次正常地 RPC 调用还需要解决两个问题,即数据传输采用什么协议以及数据该如何序列化和反序列化。

 

数据传输采用什么协议?

首先来看第一个问题,数据传输采用什么协议?

最常用的有 HTTP 协议,它是一种开放的协议,各大网站的服务器和浏览器之间的数据传输大都采用了这种协议。还有一些定制的私有协议,比如阿里巴巴开源的 Dubbo 协议,也可以用于服务端和客户端之间的数据传输。无论是开放的还是私有的协议,都必须定义一个“契约”,以便服务消费和服务提供者之间能够达成共识。服务消费者按照契约,对传输的数据进行编码,然后通过网络传输过去;服务提供者从网络上接收到数据后,按照契约,对传输的数据进行解码,然后处理请求,再把处理后的结果进行编码,通过网络传输返回给服务消费者;服务消费者再对返回的结果进行解码,最终得到服务提供者处理后的返回值。

通常协议契约包括两个部分:消息头和消息体。其中消息头存放的是协议的公共字段以及用户扩展字段,消息体存放的是传输数据的具体内容。

以 HTTP 协议为例,下图展示了一段采用 HTTP 协议传输的数据响应报文,主要分为消息头和消息体两部分,其中消息头中存放的是协议的公共字段,比如 Server 代表是服务端服务器类型、Content-Length 代表返回数据的长度、Content-Type 代表返回数据的类型;消息体中存放的是具体的返回结果。

微服务————RPC远程调用

数据该如何序列化和反序列化?

一般数据在网络中进行传输前,都要先在发送方一端对数据进行编码,经过网络传输到达另一端后,再对数据进行解码,这个过程就是序列化和反序列化。

为什么要对数据进行序列化和反序列化呢?要知道网络传输的耗时一方面取决于网络带宽的大小,另一方面取决于数据传输量。要想加快网络传输,要么提高带宽,要么减小数据传输量,而对数据进行编码的主要目的就是减小数据传输量。比如一部高清电影原始大小为 30GB,如果经过特殊编码格式处理,可以减小到 3GB,同样是 100MB/s 的网速,下载时间可以从 300s 减小到 30s。

常用的序列化方式分为两类:文本类如 XML/JSON 等,二进制类如 PB/Thrift 等,而具体采用哪种序列化方式,主要取决于三个方面的因素。

支持数据结构类型的丰富度。数据结构种类支持的越多越好,这样的话对于使用者来说在编程时更加友好,有些序列化框架如 Hessian 2.0 还支持复杂的数据结构比如 Map、List 等。

跨语言支持。序列化方式是否支持跨语言也是一个很重要的因素,否则使用的场景就比较局限,比如 Java 序列化只支持 Java 语言,就不能用于跨语言的服务调用了。

性能。主要看两点,一个是序列化后的压缩比,一个是序列化的速度。以常用的 PB 序列化和 JSON 序列化协议为例来对比分析,PB 序列化的压缩比和速度都要比 JSON 序列化高很多,所以对性能和存储空间要求比较高的系统选用 PB 序列化更合适;而 JSON 序列化虽然性能要差一些,但可读性更好,更适合对外部提供服务。

 

实战:开源RPC框架如何选型

常见开源PRC框架

业界应用比较广泛的开源 RPC 框架有哪些呢?简单划分的话,主要分为两类:一类是跟某种特定语言平台绑定的,另一类是与语言无关即跨语言平台的。

跟语言平台绑定的开源 RPC 框架主要有下面几种。

Dubbo:国内最早开源的 RPC 框架,由阿里巴巴公司开发并于 2011 年末对外开源,仅支持 Java 语言。

Motan:微博内部使用的 RPC 框架,于 2016 年对外开源,仅支持 Java 语言。

Tars:腾讯内部使用的 RPC 框架,于 2017 年对外开源,仅支持 C++ 语言。

Spring Cloud:国外 Pivotal 公司 2014 年对外开源的 RPC 框架,仅支持 Java 语言,最近几年生态发展得比较好,是比较火的 RPC 框架。

而跨语言平台的开源 RPC 框架主要有以下几种。

gRPC:Google 于 2015 年对外开源的跨语言 RPC 框架,支持常用的 C++、Java、Python、Go、Ruby、PHP、Android Java、Objective-C 等多种语言。

Thrift:最初是由 Facebook 开发的内部系统跨语言的 RPC 框架,2007 年贡献给了 Apache 基金,成为 Apache 开源项目之一,支持常用的 C++、Java、PHP、Python、Ruby、Erlang 等多种语言。

所以很明显,如果你的业务场景仅仅局限于一种语言的话,可以选择跟语言绑定的 RPC 框架中的一种;如果涉及多个语言平台之间的相互调用,就应该选择跨语言平台的 RPC 框架。

具体框架实现如下:

1. Dubbo

Dubbo 的架构主要包含四个角色,其中 Consumer 是服务消费者,Provider 是服务提供者,Registry 是注册中心,Monitor 是监控系统。

具体的交互流程是 Consumer 一端通过注册中心获取到 Provider 节点后,通过 Dubbo 的客户端 SDK 与 Provider 建立连接,并发起调用。Provider 一端通过 Dubbo 的服务端 SDK 接收到 Consumer 的请求,处理后再把结果返回给 Consumer。

服务消费者和服务提供者都需要引入 Dubbo 的 SDK 才来完成 RPC 调用,因为 Dubbo 本身是采用 Java 语言实现的,所以要求服务消费者和服务提供者也都必须采用 Java 语言实现才可以应用。

Dubbo 的调用框架实现:

通信框架方面,Dubbo 默认采用了 Netty 作为通信框架。

通信协议方面,Dubbo 除了支持私有的 Dubbo 协议外,还支持 RMI 协议、Hession 协议、HTTP 协议、Thrift 协议等。

序列化格式方面,Dubbo 支持多种序列化格式,比如 Dubbo、Hession、JSON、Kryo、FST 等。

2. Motan

Motan 是国内另外一个比较有名的开源的 RPC 框架,同样也只支持 Java 语言实现。Motan 与 Dubbo 的架构类似,都需要在 Client 端(服务消费者)和 Server 端(服务提供者)引入 SDK,其中 Motan 框架主要包含下面几个功能模块。

register:用来和注册中心交互,包括注册服务、订阅服务、服务变更通知、服务心跳发送等功能。Server 端会在系统初始化时通过 register 模块注册服务,Client 端会在系统初始化时通过 register 模块订阅到具体提供服务的 Server 列表,当 Server 列表发生变更时也由 register 模块通知 Client。

protocol:用来进行 RPC 服务的描述和 RPC 服务的配置管理,这一层还可以添加不同功能的 filter 用来完成统计、并发限制等功能。

serialize:将 RPC 请求中的参数、结果等对象进行序列化与反序列化,即进行对象与字节流的互相转换,默认使用对 Java 更友好的 Hessian 2 进行序列化。

transport:用来进行远程通信,默认使用 Netty NIO 的 TCP 长链接方式。

cluster:Client 端使用的模块,cluster 是一组可用的 Server 在逻辑上的封装,包含若干可以提供 RPC 服务的 Server,实际请求时会根据不同的高可用与负载均衡策略选择一个可用的 Server 发起远程调用。

3. Tars

Tars 是腾讯根据内部多年使用微服务架构的实践,总结而成的开源项目,仅支持 C++ 语言

Tars 的架构交互主要包括以下几个流程:

服务发布流程:在 web 系统上传 server 的发布包到 patch,上传成功后,在 web 上提交发布 server 请求,由 registry 服务传达到 node,然后 node 拉取 server 的发布包到本地,拉起 server 服务。

管理命令流程:web 系统上的可以提交管理 server 服务命令请求,由 registry 服务传达到 node 服务,然后由 node 向 server 发送管理命令。

心跳上报流程:server 服务运行后,会定期上报心跳到 node,node 然后把服务心跳信息上报到 registry 服务,由 registry 进行统一管理。

信息上报流程:server 服务运行后,会定期上报统计信息到 stat,打印远程日志到 log,定期上报属性信息到 prop、上报异常信息到 notify、从 config 拉取服务配置信息。

client 访问 server 流程:client 可以通过 server 的对象名 Obj 间接访问 server,client 会从 registry 上拉取 server 的路由信息(如 IP、Port 信息),然后根据具体的业务特性(同步或者异步,TCP 或者 UDP 方式)访问 server(当然 client 也可以通过 IP/Port 直接访问 server)。

4. Spring Cloud

Spring Cloud 是为了解决微服务架构中服务治理而提供的一系列功能的开发框架,它是完全基于 Spring Boot 进行开发的,Spring Cloud 利用 Spring Boot 特性整合了开源行业中优秀的组件,整体对外提供了一套在微服务架构中服务治理的解决方案。因为 Spring Boot 是用 Java 语言编写的,所以目前 Spring Cloud 也只支持 Java 语言平台。它由多个组件一起组成的,各个组件的交互流程如下。

请求统一通过 API 网关 Zuul 来访问内部服务,先经过 Token 进行安全认证。

通过安全认证后,网关 Zuul 从注册中心 Eureka 获取可用服务节点列表。

从可用服务节点中选取一个可用节点,然后把请求分发到这个节点。

整个请求过程中,Hystrix 组件负责处理服务超时熔断,Turbine 组件负责监控服务间的调用和熔断相关指标,Sleuth 组件负责调用链监控,ELK 负责日志分析。

gRPC

gRPC,它的原理是通过 IDL(Interface Definition Language)文件定义服务接口的参数和返回值类型,然后通过代码生成程序生成服务端和客户端的具体实现代码,这样在 gRPC 里,客户端应用可以像调用本地对象一样调用另一台服务器上对应的方法。

它的主要特性包括三个方面。

通信协议采用了 HTTP/2,因为 HTTP/2 提供了连接复用、双向流、服务器推送、请求优先级、首部压缩等机制,所以在通信过程中可以节省带宽、降低 TCP 连接次数、节省 CPU,尤其对于移动端应用来说,可以帮助延长电池寿命。

IDL 使用了ProtoBuf,ProtoBuf 是由 Google 开发的一种数据序列化协议,它的压缩和传输效率极高,语法也简单,所以被广泛应用在数据存储和通信协议上。

多语言支持,能够基于多种语言自动生成对应语言的客户端和服务端的代码。

Thrift

Thrift 是一种轻量级的跨语言 RPC 通信方案,支持多达 25 种编程语言。为了支持多种语言,跟 gRPC 一样,Thrift 也有一套自己的接口定义语言 IDL,可以通过代码生成器,生成各种编程语言的 Client 端和 Server 端的 SDK 代码,这样就保证了不同语言之间可以相互通信。

Thrift RPC 框架的特性。

支持多种序列化格式:如 Binary、Compact、JSON、Multiplexed 等。

支持多种通信方式:如 Socket、Framed、File、Memory、zlib 等。

服务端支持多种处理方式:如 Simple 、Thread Pool、Non-Blocking 等。

 

开源PRC框架对比选型

如果你的语言平台是 C++,那么只能选择 Tars;而如果是 Java 的话,可以选择 Dubbo、Motan 或者 Spring Cloud。

而Dubbo、Motan 或者 Spring Cloud之间:

Spring Cloud 不仅提供了基本的 RPC 框架功能,还提供了服务注册组件、配置中心组件、负载均衡组件、断路器组件、分布式消息追踪组件等一系列组件,也难怪被技术圈的人称之为“Spring Cloud 全家桶”。如果你不想自己实现以上这些功能,那么 Spring Cloud 基本可以满足你的全部需求。而 Dubbo、Motan 基本上只提供了最基础的 RPC 框架的功能,其他微服务组件都需要自己去实现。

不过由于 Spring Cloud 的 RPC 通信采用了 HTTP 协议,相比 Dubbo 和 Motan 所采用的私有协议来说,在高并发的通信场景下,性能相对要差一些,所以对性能有苛刻要求的情况下,可以考虑 Dubbo 和 Motan。

那么涉及跨语言的服务调用场景,到底该选择 gRPC 还是 Thrift 呢?

从成熟度上来讲,Thrift 因为诞生的时间要早于 gRPC,所以使用的范围要高于 gRPC,在 HBase、Hadoop、Scribe、Cassandra 等许多开源组件中都得到了广泛地应用。而且 Thrift 支持多达 25 种语言,这要比 gRPC 支持的语言更多,所以如果遇到 gRPC 不支持的语言场景下,选择 Thrift 更合适。

但 gRPC 作为后起之秀,因为采用了 HTTP/2 作为通信协议、ProtoBuf 作为数据序列化格式,在移动端设备的应用以及对传输带宽比较敏感的场景下具有很大的优势,而且开发文档丰富,根据 ProtoBuf 文件生成的代码要比 Thrift 更简洁一些,从使用难易程度上更占优势,所以如果使用的语言平台 gRPC 支持的话,建议还是采用 gRPC 比较好。

 

总结:从长远来看,支持多语言是 RPC 框架未来的发展趋势。正是基于此判断,各个 RPC 框架都提供了 Sidecar 组件来支持多语言平台之间的 RPC 调用。

Dubbo 宣称要引入 Sidecar 组件来构建Dubbo Mesh提供多语言支持。

Motan 对外开源了其内部的 Sidecar 组件:Motan-go,目前支持 PHP、Java 语言之间的相互调用。

Spring Cloud 也提供了 Sidecar 组件spring-cloud-netflix-sideca,可以让其他语言也可以使用 Spring Cloud 的组件。

所以未来语言不会成为使用上面这几种 RPC 框架的约束,而 gRPC 和 Thrift 虽然支持跨语言的 RPC 调用,但是因为它们只提供了最基本的 RPC 框架功能,缺乏一系列配套的服务化组件和服务治理功能的支撑,所以使用它们作为跨语言调用的 RPC 框架,就需要自己考虑注册中心、熔断、限流、监控、分布式追踪等功能的实现,不过好在大多数功能都有开源实现,可以直接采用。