之前看过的机器学习课程。本文是相关课程笔记、习题答案、作业源码的电梯。
1 Coursera 斯坦福机器学习课程,Andrew Ng
1.1 说明
Coursera连接不上(视频无法播放),修改hosts文件
1.2 课程笔记
Week1
课程笔记 Lecture 1_Introduction and Basic Concepts 介绍和基本概念
课程笔记 Lecture 2_Linear regression with one variable 单变量线性回归
课程笔记 Lecture 3_Linear Algebra Review 线性代数
Week2
课程笔记 Lecture 4_Linear Regression with Multiple Variables 多变量线性回归
课程笔记 Lecture 5 Octave Tutorial 教程
Week3
课程笔记 Lecture 6_Logistic Regression 逻辑回归
课程笔记 Lecture 7 Regularization 正则化
Week4
课程笔记 Lecture 8_Neural Networks Representation 神经网络的表述
Week5
课程笔记 Lecture 9_Neural Networks learning 神经网络学习
Week6
课程笔记 Lecture 10_Advice for applying machine learning 机器学习应用建议
课程笔记 Lecture 11_Machine Learning System Design 机器学习系统设计
Week7
课程笔记 Lecture 12_Support Vector Machines 支持向量机
Week8
课程笔记 Lecture 14_Dimensionality Reduction 降维
Week9
课程笔记 Lecture 15_Anomaly Detection异常检测
课程笔记 Lecture 16_Recommender Systems 推荐系统
Week10
课程笔记 Lecture 17_Large Scale Machine Learning 大规模机器学习
课程笔记 Lecture 18_Photo OCR 应用实例:图片文字识别
1.3 课上习题和测验答案
Week 1 习题—Linear Regression with One Variable 单变量线性回归
Week 2 习题—Linear Regression with Multiple Variables 多变量线性回归
Week 3 习题—Logistic Regression 逻辑回归
Week 4 习题—Neural Networks 神经网络
Week 5 习题—Neural Networks learning 神经网络学习
Week 6 习题—Advice for applying machine learning 机器学习应用建议
1.4 编程作业答案和源码
Programming Exercise 3—多分类逻辑回归和神经网络
Programming Exercise 4—反向传播神经网络
2 网易公开课 斯坦福cs229机器学习,Andrew Ng
课程笔记 Part1:线性回归 Linear Regression
课程笔记 part2:分类和逻辑回归 Classificatiion and logistic regression
课程笔记 part3:广义线性模型 Greneralized Linear Models (GLMs)
3 林轩田《机器学习基石》
4 Deeplearning.ai 系列课程,Andrew Ng
课程地址:
编程习题:
笔记: