回归预测 | MATLAB实现PSO-RF粒子群算法优化随机森林多输入单输出回归预测

时间:2022-06-19 01:11:04

回归预测 | MATLAB实现PSO-RF粒子群算法优化随机森林多输入单输出回归预测

效果一览

回归预测 | MATLAB实现PSO-RF粒子群算法优化随机森林多输入单输出回归预测
回归预测 | MATLAB实现PSO-RF粒子群算法优化随机森林多输入单输出回归预测
回归预测 | MATLAB实现PSO-RF粒子群算法优化随机森林多输入单输出回归预测
回归预测 | MATLAB实现PSO-RF粒子群算法优化随机森林多输入单输出回归预测
回归预测 | MATLAB实现PSO-RF粒子群算法优化随机森林多输入单输出回归预测
回归预测 | MATLAB实现PSO-RF粒子群算法优化随机森林多输入单输出回归预测
回归预测 | MATLAB实现PSO-RF粒子群算法优化随机森林多输入单输出回归预测
回归预测 | MATLAB实现PSO-RF粒子群算法优化随机森林多输入单输出回归预测

基本介绍

MATLAB实现PSO-RF粒子群算法优化随机森林多输入单输出回归预测
粒子群算法优化随机森林(PSO-RF)回归预测(Matlab完整程序和数据)
输入6个特征,输出1个,即多输入单输出;
运行环境Matlab2018及以上,运行主程序main即可,其余为函数文件无需运行,所有程序放在一个文件夹,data为数据集;
命令窗口输出RMSEP、MAE、R2、MAPE。

程序设计

%% 定义粒子群算法参数
% N 种群 T 迭代次数 
%% 随机初始化种群
D=dim;                   %粒子维数
c1=1.5;                 %学习因子1
c2=1.5;                 %学习因子2
w=0.8;                  %惯性权重

Xmax=ub;                %位置最大值
Xmin=lb;               %位置最小值
Vmax=ub;                %速度最大值
Vmin=lb;               %速度最小值
%%
%%%%%%%%%%%%%%%%初始化种群个体(限定位置和速度)%%%%%%%%%%%%%%%%

x=rand(N,D).*(Xmax-Xmin)+Xmin;
v=rand(N,D).*(Vmax-Vmin)+Vmin;
%%%%%%%%%%%%%%%%%%初始化个体最优位置和最优值%%%%%%%%%%%%%%%%%%%
p=x;
pbest=ones(N,1);
for i=1:N
    pbest(i)=fobj(x(i,:)); 
end
%%%%%%%%%%%%%%%%%%%初始化全局最优位置和最优值%%%%%%%%%%%%%%%%%%
g=ones(1,D);
gbest=inf;
for i=1:N
    if(pbest(i)<gbest)
        g=p(i,:);
        gbest=pbest(i);
    end
end
%%%%%%%%%%%按照公式依次迭代直到满足精度或者迭代次数%%%%%%%%%%%%%
for i=1:T
    i
    for j=1:N
        %%%%%%%%%%%%%%更新个体最优位置和最优值%%%%%%%%%%%%%%%%%
        if (fobj(x(j,:))) <pbest(j)
            p(j,:)=x(j,:);
            pbest(j)=fobj(x(j,:)); 
        end
        %%%%%%%%%%%%%%%%更新全局最优位置和最优值%%%%%%%%%%%%%%%
        if(pbest(j)<gbest)
            g=p(j,:);
            gbest=pbest(j);
        end
        %%%%%%%%%%%%%%%%%跟新位置和速度值%%%%%%%%%%%%%%%%%%%%%
        v(j,:)=w*v(j,:)+c1*rand*(p(j,:)-x(j,:))...
            +c2*rand*(g-x(j,:));
        x(j,:)=x(j,:)+v(j,:);
        %%%%%%%%%%%%%%%%%%%%边界条件处理%%%%%%%%%%%%%%%%%%%%%%
        if length(Vmax)==1
            for ii=1:D
                if (v(j,ii)>Vmax)  |  (v(j,ii)< Vmin)
                    v(j,ii)=rand * (Vmax-Vmin)+Vmin;
                end
                if (x(j,ii)>Xmax)  |  (x(j,ii)< Xmin)
                    x(j,ii)=rand * (Xmax-Xmin)+Xmin;
                end
            end           
        else
            for ii=1:D
                if (v(j,ii)>Vmax(ii))  |  (v(j,ii)< Vmin(ii))
                    v(j,ii)=rand * (Vmax(ii)-Vmin(ii))+Vmin(ii);
                end
                if (x(j,ii)>Xmax(ii))  |  (x(j,ii)< Xmin(ii))
                    x(j,ii)=rand * (Xmax(ii)-Xmin(ii))+Xmin(ii);
                end
            end
        end
            
    end
    %%%%%%%%%%%%%%%%%%%%记录历代全局最优值%%%%%%%%%%%%%%%%%%%%%
   Convergence_curve(i)=gbest;%记录训练集的适应度值
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行
tic
restoredefaultpath

%%  导入数据
P_train = xlsread('data','training set','B2:G191')';
T_train= xlsread('data','training set','H2:H191')';
% 测试集——44个样本
P_test=xlsread('data','test set','B2:G45')';
T_test=xlsread('data','test set','H2:H45')';
%%  划分训练集和测试集
M = size(P_train, 2);
N = size(P_test, 2);
f_ = size(P_train, 1);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%%  参数初始化
pop=10; %种群数量
Max_iter=30; %  设定最大迭代次数
dim = 2;% 维度为2,即优化两个超参数
lb = [1,1];%下边界
ub = [20,20];%上边界
fobj = @(x) fun(x,p_train,t_train);
[Best_pos,Best_score,curve]=PSO(pop,Max_iter,lb,ub,dim,fobj); %开始优化

%%  提取最优参数
n_trees = Best_pos(1);
n_layer = Best_pos(2);

%%  转置以适应模型
p_train = p_train'; p_test = p_test';
t_train = t_train'; t_test = t_test';

%%  创建模型
model = regRF_train(p_train, t_train, n_trees, n_layer);
   

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718