洛谷3934:Nephren Ruq Insania——题解

时间:2023-03-10 08:44:04
洛谷3934:Nephren Ruq Insania——题解

https://www.luogu.org/problemnew/show/P3934

题面自己读吧(滑稽。

看到这道题就能够想到BZOJ4869:[SHOI2017]相逢是问候我们曾经用过的哲学扩展欧拉定理。

(咦什么时候这个东西都普及到noip了好方啊)

洛谷3934:Nephren Ruq Insania——题解

也就是说,不论询问的区间[l,r]长度有多大,实际上我们暴力算只需要logp次模数就变成了1之后的询问就不需要担心了。

区间修改可以线段树/树状数组来干。

敲完发现是70pts,很难受。

有没有发现这个公式前面有一个前提?其实,当a^b<p的时候,a的指数就不应当加phi(p)了,这也就是错的原因。

我们当然可以每次传递当前的b是否曾经对phi(p)取过模来决定是否加phi(p),经过多次修改之后终于AC了……

PS:请注意我们运算的时候很可能出现x^0%x=1这种情况,而显然我们希望的答案应当为0(虽然我并不知道为什么),所以需要特判之。

#include<cmath>
#include<queue>
#include<vector>
#include<cstdio>
#include<cctype>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=5e5+;
const int M=2e7+;
inline int read(){
int X=,w=;char ch=;
while(!isdigit(ch)){w|=ch=='-';ch=getchar();}
while(isdigit(ch))X=(X<<)+(X<<)+(ch^),ch=getchar();
return w?-X:X;
}
bool ok[N];
ll qpow(ll k,ll n,int p,int l){
ll res=;
while(n){
if(n&){
res*=k;
if(res>=p)ok[l]=,res%=p;
}
k*=k;n>>=;
if(k>=p)ok[l]=,k%=p;
}
return res;
}
int n,m;
int su[M],he[M],phi[M],tot;
ll tr[N*],lz[N*],b[N];
void Euler(int n){
phi[]=;
for(int i=;i<=n;i++){
if(!he[i])su[++tot]=i,phi[i]=i-;
for(int j=;j<=tot;j++){
if(i*su[j]>n)break;
he[i*su[j]]=;
if(i%su[j]==){
phi[i*su[j]]=phi[i]*su[j];
break;
}else phi[i*su[j]]=phi[i]*phi[su[j]];
}
}
}
inline void push(int a,int l,int r){
if(!lz[a])return;
int mid=(l+r)>>;
lz[a<<]+=lz[a];lz[a<<|]+=lz[a];
if(l==mid)tr[a<<]+=lz[a];
if(mid+==r)tr[a<<|]+=lz[a];
lz[a]=;
}
void build(int a,int l,int r){
if(l==r){
tr[a]=b[l];return;
}
int mid=(l+r)>>;
build(a<<,l,mid);build(a<<|,mid+,r);
}
void add(int a,int l,int r,int l1,int r1,int x){
if(r<l1||r1<l)return;
if(l1<=l&&r<=r1){
lz[a]+=x;
if(l==r)tr[a]+=x;
return;
}
push(a,l,r);
int mid=(l+r)>>;
add(a<<,l,mid,l1,r1,x);add(a<<|,mid+,r,l1,r1,x);
}
ll ask(int a,int l,int r,int k){
if(l==r)return tr[a];
push(a,l,r);
int mid=(l+r)>>;
if(k<=mid)return ask(a<<,l,mid,k);
else return ask(a<<|,mid+,r,k);
}
ll query(int l,int r,int p){
ok[l]=;
ll ans=ask(,,n,l);
if(ans>=p)ok[l]=;
if(ans%p==)return ;
if(p==)return ;
ans%=p;
if(l==r)return ans;
ll tmp=query(l+,r,phi[p]);
return qpow(ans,tmp+(ok[l+]?phi[p]:),p,l);
}
int main(){
Euler(2e7);
n=read(),m=read();
for(int i=;i<=n;i++)b[i]=read();
build(,,n);
for(int i=;i<=m;i++){
int op=read();
if(op==){
int l=read(),r=read(),x=read();
add(,,n,l,r,x);
}else{
int l=read(),r=read(),p=read();
printf("%lld\n",query(l,r,p));
}
}
return ;
}

当然还有另外一种(正解)的做法。

考虑到假设我们暴力枚举模拟前几次操作之后,往后的操作基本都是大于phi(p)的,而没有加phi(p)的只可能是前面几项。

故暴力处理前面几项即可,常数显然要比上面的方法要大很多。

#include<cmath>
#include<queue>
#include<vector>
#include<cstdio>
#include<cctype>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=5e5+;
const int M=2e7+;
inline int read(){
int X=,w=;char ch=;
while(!isdigit(ch)){w|=ch=='-';ch=getchar();}
while(isdigit(ch))X=(X<<)+(X<<)+(ch^),ch=getchar();
return w?-X:X;
}
int qpow(int k,ll n,int p){
int res=;
while(n){
if(n&)res=(ll)res*k%p;
k=(ll)k*k%p;n>>=;
}
return res;
}
int n,m,tag[N];
int su[M],he[M],phi[M],tot;
ll tr[N*],lz[N*],b[N];
void Euler(int n){
phi[]=;
for(int i=;i<=n;i++){
if(!he[i])su[++tot]=i,phi[i]=i-;
for(int j=;j<=tot;j++){
if(i*su[j]>n)break;
he[i*su[j]]=;
if(i%su[j]==){
phi[i*su[j]]=phi[i]*su[j];
break;
}else phi[i*su[j]]=phi[i]*phi[su[j]];
}
}
}
inline void push(int a,int l,int r){
if(!lz[a])return;
int mid=(l+r)>>;
lz[a<<]+=lz[a];lz[a<<|]+=lz[a];
if(l==mid)tr[a<<]+=lz[a];
if(mid+==r)tr[a<<|]+=lz[a];
lz[a]=;
}
inline void build(int a,int l,int r){
if(l==r){
tr[a]=b[l];return;
}
int mid=(l+r)>>;
build(a<<,l,mid);build(a<<|,mid+,r);
}
inline void add(int a,int l,int r,int l1,int r1,int x){
if(r<l1||r1<l)return;
if(l1<=l&&r<=r1){
lz[a]+=x;
if(l==r)tr[a]+=x;
return;
}
push(a,l,r);
int mid=(l+r)>>;
add(a<<,l,mid,l1,r1,x);add(a<<|,mid+,r,l1,r1,x);
}
inline ll ask(int a,int l,int r,int k){
if(l==r)return tr[a];
push(a,l,r);
int mid=(l+r)>>;
if(k<=mid)return ask(a<<,l,mid,k);
else return ask(a<<|,mid+,r,k);
}
inline ll qry(int l){
if(tag[l]==m)return b[l];
tag[l]=m;
return b[l]=ask(,,n,l);
}
inline ll query(int l,int r,int p){
ll ans=qry(l);
if(ans%p==)return ;
if(p==)return ;
if(l==r)return (ans%p+(ans>p)*p)%p;
int f=min(r,l+);
for(int i=l+;i<=f;i++){
if(qry(i)==){
f=i;break;
}
}
ll t=qry(f),q=;
for(int i=f-;i>=l+;i--){
q=t,t=;
ll tmp=qry(i);
while(q--){
t*=tmp;
if(t>=phi[p])return qpow(ans%p,query(l+,r,phi[p])+phi[p],p);
}
}
return qpow(ans%p,t,p);
}
int main(){
Euler(2e7);memset(tag,-,sizeof(tag));
n=read(),m=read();
for(int i=;i<=n;i++)b[i]=read();
build(,,n);
while(m--){
int op=read();
if(op==){
int l=read(),r=read(),x=read();
add(,,n,l,r,x);
}else{
int l=read(),r=read(),p=read();
printf("%lld\n",query(l,r,p));
}
}
return ;
}

+++++++++++++++++++++++++++++++++++++++++++

+本文作者:luyouqi233。               +

+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+

+++++++++++++++++++++++++++++++++++++++++++