BZOJ.3495.[PA2010]Riddle(2-SAT 前缀优化建图)

时间:2023-03-10 07:31:15
BZOJ.3495.[PA2010]Riddle(2-SAT 前缀优化建图)

题目链接

每个城市要么建首都要么不建,考虑2-SAT

这样一个国家内城市两两连边是很显然的,但是边数为O(n^2)

每个国家中仅有一个建首都,考虑新建前缀S[i]=1/0这2n个点表示当前国家的[1,i]中建了/没建首都

现在考虑这些限制:(A[i]=1/0表示i城市建/不建)

0.若A[i]=1,则S[i]=1;若S[i]=0,则A[i]=0(对于i自己)

1.若A[i]=1,则S[i-1]=0;若S[i-1]=1,则A[i]=0 (一个国家一个首都的限制)(前者由A[i]->A[i-1]'是多余的,连到\(S_{i-1}'\)自然会连到\(A_{i-1}'\))

2.若S[i-1]=1,则S[i]=1;若S[i]=0,则S[i-1]=0 (前缀关系)

后缀优化的原理是一样的,不过这题并不需要

再加上边端点的限制就可以了

//167004kb	16344ms
#include <cstdio>
#include <cctype>
#include <algorithm>
#define gc() getchar()
const int N=4e6+5,M=N<<1; int n,m,k,Enum,H[N],nxt[M],to[M],id,low[N],dfn[N],sk[N],top,cnt,bel[N];
bool ins[N]; inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
inline void AddEdge(int u,int v){
to[++Enum]=v, nxt[Enum]=H[u], H[u]=Enum;
}
inline void Tarjan(int x)
{
dfn[x]=low[x]=++id, ins[x]=1, sk[++top]=x;
for(int v,i=H[x]; i; i=nxt[i])
if(!dfn[v=to[i]]) Tarjan(v),low[x]=std::min(low[x],low[v]);
else if(ins[v]) low[x]=std::min(low[x],dfn[v]);
if(low[x]==dfn[x])
{
++cnt;
do{
ins[sk[top]]=0, bel[sk[top]]=cnt;
}while(x!=sk[top--]);
}
} int main()
{
n=read(),m=read(),k=read();
for(int u,v,i=1; i<=m; ++i)
u=read(),v=read(),AddEdge(u+n,v),AddEdge(v+n,u);
for(int i=1; i<=n; ++i) AddEdge(i,2*n+i),AddEdge(3*n+i,i+n);
for(int num,now,las,i=1; i<=k; ++i)
{
num=read(), las=read();
for(int j=2; j<=num; ++j,las=now)
{
now=read(),
AddEdge(2*n+las,2*n+now), AddEdge(3*n+now,3*n+las),
AddEdge(now,3*n+las), AddEdge(2*n+las,now+n);
}
}
for(int i=1; i<=n<<2; ++i)
if(!dfn[i]) Tarjan(i);
for(int i=1; i<=n; ++i)
if(bel[i]==bel[i+n]) {printf("NIE"); return 0;}
for(int i=n<<1|1; i<=3*n; ++i)
if(bel[i]==bel[i+n]) {printf("NIE"); return 0;}
printf("TAK"); return 0;
}
//150832kb 19404ms
//{//优化编号方式 注意这样编号要-1 -> 于是这样更慢了...?
// for(int u,v,i=1; i<=m; ++i)
// u=read()-1,v=read()-1,AddEdge(u<<1|1,v<<1),AddEdge(v<<1|1,u<<1);
// for(int i=0; i<n; ++i) AddEdge(i<<1,i+n<<1),AddEdge(i+n<<1|1,i<<1|1);
// for(int num,now,las,i=1; i<=k; ++i)
// {
// num=read(), las=read()-1;
// for(int j=2; j<=num; las=now,++j)
// {
// now=read()-1,
// AddEdge(las+n<<1,now+n<<1), AddEdge(now+n<<1|1,las+n<<1|1),
// AddEdge(now<<1,las+n<<1|1), AddEdge(las+n<<1,now<<1|1);
// }
// }
// n<<=2;
// for(int i=0; i<n; ++i)
// if(!dfn[i]) Tarjan(i);
// for(int i=0; i<n; i+=2)
// if(bel[i]==bel[i^1]) {printf("NIE"); return 0;}
// printf("TAK");
//}