PIGS
Time Limit: 1000ms
Memory Limit: 10000KB
This problem will be judged on PKU.
64-bit integer(整数) IO format: %lld Java class name: Main
Mirko works on a pig farm that consists of M locked pig-houses and Mirko
can't unlock any pighouse because he doesn't have the keys. Customers
come to the farm one after another. Each of them has keys to some
pig-houses and wants to buy a certain number of pigs.
All data concerning(关于)
customers planning to visit the farm on that particular day are
available to Mirko early in the morning so that he can make a sales-plan
in order to maximize(取…最大值) the number of pigs sold.
More precisely(精确地), the procedure(程序)
is as following: the customer arives, opens all pig-houses to which he
has the key, Mirko sells a certain number of pigs from all the unlocked
pig-houses to him, and, if Mirko wants, he can redistribute(重新分配) the remaining pigs across the unlocked pig-houses.
An unlimited number of pigs can be placed in every pig-house.
Write a program that will find the maximum number of pigs that he can sell on that day.
can't unlock any pighouse because he doesn't have the keys. Customers
come to the farm one after another. Each of them has keys to some
pig-houses and wants to buy a certain number of pigs.
All data concerning(关于)
customers planning to visit the farm on that particular day are
available to Mirko early in the morning so that he can make a sales-plan
in order to maximize(取…最大值) the number of pigs sold.
More precisely(精确地), the procedure(程序)
is as following: the customer arives, opens all pig-houses to which he
has the key, Mirko sells a certain number of pigs from all the unlocked
pig-houses to him, and, if Mirko wants, he can redistribute(重新分配) the remaining pigs across the unlocked pig-houses.
An unlimited number of pigs can be placed in every pig-house.
Write a program that will find the maximum number of pigs that he can sell on that day.
Input
The first line of input(投入) contains two integers(整数)
M and N, 1 <= M <= 1000, 1 <= N <= 100, number of pighouses
and number of customers. Pig houses are numbered from 1 to M and
customers are numbered from 1 to N.
The next line contains M integeres, for each pig-house initial
number of pigs. The number of pigs in each pig-house is greater or equal
to 0 and less or equal to 1000.
The next N lines contains records about the customers in the
following form ( record about the i-th customer is written in the
(i+2)-th line):
A K1 K2 ... KA B It means that this customer has key to the pig-houses marked with the numbers K1, K2, ..., KA (sorted nondecreasingly(不减少的) ) and that he wants to buy B pigs. Numbers A and B can be equal to 0.
M and N, 1 <= M <= 1000, 1 <= N <= 100, number of pighouses
and number of customers. Pig houses are numbered from 1 to M and
customers are numbered from 1 to N.
The next line contains M integeres, for each pig-house initial
number of pigs. The number of pigs in each pig-house is greater or equal
to 0 and less or equal to 1000.
The next N lines contains records about the customers in the
following form ( record about the i-th customer is written in the
(i+2)-th line):
A K1 K2 ... KA B It means that this customer has key to the pig-houses marked with the numbers K1, K2, ..., KA (sorted nondecreasingly(不减少的) ) and that he wants to buy B pigs. Numbers A and B can be equal to 0.
Output
The first and only line of the output(输出) should contain the number of sold pigs.
Sample Input
3 3
3 1 10
2 1 2 2
2 1 3 3
1 2 6
Sample Output
7
建模题,这里需要注意对空间的优化。
题意:迈克有个养猪场,养猪场里有M个猪圈,每个猪圈都上了锁。迈克没有钥匙,而要买猪的顾客一个接一个来到养猪场,每个顾客有一些猪圈的钥匙,要买一定数量的猪。当每个顾客来时,将有钥匙的猪圈全部打开,从中挑出一些买走,然后迈克可以重新分配这些猪圈里面的猪。当顾客离开后,门又被锁上。问迈克最多可以卖多少猪。
建模:先从源点给每个猪圈连一条边,容量是猪圈中猪的头数。这时再添加顾客,对于每一个顾客,查找他要开的每一个猪圈,如果他要开猪圈A,那么现在分情况讨论:
<1>若以前(先后顺序,时间上的)没有顾客开过A猪圈,那么就连一条A到这个顾客的边,容量为INF,同时标记这个人为这个猪圈的“开启者”
<2>若有,则将A的“开启者”连到这个人,容量为INF
最后每个顾客连边到汇点,容量为各自的需求,接着跑一遍最大流就可以啦,这里我用了ISAP算法
#include <iostream>
#include <cstring>
#include <cstdio>
#include <queue> using namespace std;
const int INF=;
const int maxn=,maxm=;
int cnt,fir[maxn],nxt[maxm],cap[maxm],to[maxm],dis[maxn],gap[maxn],path[maxn],used[maxn]; void addedge(int a,int b,int c)
{
nxt[++cnt]=fir[a];
to[cnt]=b;
cap[cnt]=c;
fir[a]=cnt;
} bool BFS(int S,int T)
{
memset(dis,,sizeof(dis));
dis[T]=;
queue<int>q;q.push(T);
while(!q.empty())
{
int node=q.front();q.pop();
for(int i=fir[node];i;i=nxt[i])
{
if(dis[to[i]])continue;
dis[to[i]]=dis[node]+;
q.push(to[i]);
}
}
return dis[S];
}
int fron[maxn];
int ISAP(int S,int T)
{
if(!BFS(S,T))
return ;
for(int i=;i<=T;i++)++gap[dis[i]];
int p=S,ret=;
memcpy(fron,fir,sizeof(fir));
while(dis[S]<=T)
{
if(p==T){
int f=INF;
while(p!=S){
f=min(f,cap[path[p]]);
p=to[path[p]^];
}
p=T;ret+=f;
while(p!=S){
cap[path[p]]-=f;
cap[path[p]^]+=f;
p=to[path[p]^];
}
}
int &ii=fron[p];
for(;ii;ii=nxt[ii]){
if(!cap[ii]||dis[to[ii]]+!=dis[p])
continue;
else
break;
}
if(ii){
p=to[ii];
path[p]=ii;
}
else{
if(--gap[dis[p]]==)break;
int minn=T+;
for(int i=fir[p];i;i=nxt[i])
if(cap[i])
minn=min(minn,dis[to[i]]);
gap[dis[p]=minn+]++;
fron[p]=fir[p];
if(p!=S)
p=to[path[p]^];
}
}
return ret;
} void Init()
{
memset(fir,,sizeof(fir));
memset(used,,sizeof(used));
cnt=;
}
int main()
{
int n,m,num,k,need;
while(~scanf("%d%d",&m,&n))
{
Init();
for(int i=;i<=m;i++){
scanf("%d",&num);
addedge(,i,num);
addedge(i,,);
}
for(int i=m+;i<=m+n;i++){
scanf("%d",&k);
while(k--){
scanf("%d",&num);
if(used[num]){
addedge(used[num],i,INF);
addedge(i,used[num],);
}
else{
used[num]=i;
addedge(num,i,INF);
addedge(i,num,);
} }
scanf("%d",&need);
addedge(i,n+m+,need);
addedge(n+m+,i,);
}
printf("%d\n",ISAP(,n+m+));
}
return ;
}