#1.使用朴素贝叶斯模型对iris数据集进行花分类
#尝试使用3种不同类型的朴素贝叶斯:
#高斯分布型,多项式型,伯努利型
from sklearn import datasets
iris=datasets.load_iris()
from sklearn.naive_bayes import GaussianNB #高斯分布型
gnb=GaussianNB()
pred=gnb.fit(iris.data,iris.target)
y_pred=gnb.predict(iris.data)
print(iris.data.shape[],(iris.target != y_pred).sum())
150 6
from sklearn import datasets
iris=datasets.load_iris()
from sklearn.naive_bayes import BernoulliNB #伯努利型
gnb=BernoulliNB()
pred=gnb.fit(iris.data,iris.target)
y_pred=gnb.predict(iris.data)
print(iris.data.shape[],(iris.target != y_pred).sum())
150 100
from sklearn import datasets
iris=datasets.load_iris()
from sklearn.naive_bayes import MultinomialNB #多项式型
gnb=MultinomialNB()
pred=gnb.fit(iris.data,iris.target)
y_pred=gnb.predict(iris.data)
print(iris.data.shape[],(iris.target != y_pred).sum())
150 7
#2.使用sklearn.model_selection.cross_val_score(),对模型进行验证。
#检测模型的好坏BernoulliNB
from sklearn.naive_bayes import BernoulliNB
from sklearn.model_selection import cross_val_score
gnb = BernoulliNB()
scores=cross_val_score(gnb,iris.data,iris.target,cv=)
print("Accuray:%.3f"%scores.mean())
Accuray:0.333
from sklearn.naive_bayes import MultinomialNB
from sklearn.model_selection import cross_val_score
gnb = MultinomialNB()
scores=cross_val_score(gnb,iris.data,iris.target,cv=)
print("Accuray:%.3f"%scores.mean())
Accuray:0.953
from sklearn.naive_bayes import GaussianNB
from sklearn.model_selection import cross_val_score
gnb = GaussianNB()
scores=cross_val_score(gnb,iris.data,iris.target,cv=)
print("Accuray:%.3f"%scores.mean())
Accuray:0.953