Hdu1401-Solitaire(双向bfs)

时间:2023-03-10 05:50:30
Hdu1401-Solitaire(双向bfs)
Solitaire is a game played on a chessboard 8x8. The rows and columns of the chessboard are numbered from 1 to 8, from the top to the bottom and from left to right respectively.
There are four identical pieces on the board. In one move it is allowed to:
> move a piece to an empty neighboring field (up, down, left or right),
> jump over one neighboring piece to an empty field (up, down, left or right).Hdu1401-Solitaire(双向bfs)There are 4 moves allowed for each piece in the configuration shown above. As an example let's consider a piece placed in the row 4, column 4. It can be moved one row up, two rows down, one column left or two columns right.
Write a program that:
> reads two chessboard configurations from the standard input,
> verifies whether the second one is reachable from the first one in at most 8 moves,
> writes the result to the standard output.
Input
Each of two input lines contains 8 integers a1, a2, ..., a8 separated by single spaces and describes one configuration of pieces on the chessboard. Integers a2j-1 and a2j (1 <= j <= 4) describe the position of one piece - the row number and the column number respectively. Process to the end of file.
Output
The output should contain one word for each test case - YES if a configuration described in the second input line is reachable from the configuration described in the first input line in at most 8 moves, or one word NO otherwise.
Sample Input
4 4 4 5 5 4 6 5
2 4 3 3 3 6 4 6
Sample Output
YES
题意:棋盘大小为8*8,然后有4个球,给出初始所有球的位置以及目标位置,每次可以移动一个球,要么移动到旁边空的地方,要么跨过一个
球到空的地方(不能跨过多个球),问能否在8步以内到达目标状态。
解析:限定了8步,而且前后搜效果是一样的,所以可以考虑用双向bfs,然后8个数哈希,要注意对4个点要排序。
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
const int mod=;
const int maxn=;
int dx[]={-,,,},dy[]={,-,,};
bool in(int x,int y){ return x>=&&x<=&&y>=&&y<=; }
struct point //球的坐标
{
int x,y;
point(int x=,int y=):x(x),y(y){}
bool operator < (const point& t) const
{
if(x!=t.x) return x<t.x;
return y<t.y;
}
};
struct node
{
point p[]; //每个节点保存4个球的坐标,并且是排好序的
}nod[][maxn]; //开二维用于双向搜
struct Hash
{
int v,k,nid,next; //保存哈希值,0或1,下标,next指针
}ha[mod+maxn];
int f[],r[],hash_id; //队首队尾指针
bool Same(int k1,int a,int k2,int b) //判断两个结构体是否完全相同
{
for(int i=;i<;i++)
{
if(nod[k1][a].p[i].x!=nod[k2][b].p[i].x) return false;
if(nod[k1][a].p[i].y!=nod[k2][b].p[i].y) return false;
}
return true;
}
int GetHash(point p[]) //得到哈希值
{
int ret=,k=;
for(int i=;i<;i++)
{
ret+=p[i].x*k; k*=; //k是系数
ret+=p[i].y*k; k*=;
}
return ret;
}
int Insert_Hash(int v,int k,int nid) //插入
{
int a=v%mod;
int p=ha[a].next;
while(p!=-)
{
if(ha[p].v==v&&Same(ha[p].k,ha[p].nid,k,nid)) return ha[p].k==k?:; //有相同的状态,k值相同返回0,不同返回1
p=ha[p].next;
}
p=++hash_id;
ha[p].v=v; ha[p].k=k; ha[p].nid=nid; //增加新的节点
ha[p].next=ha[a].next; ha[a].next=p;
return -;
}
bool Has(node& t,int x,int y)
{
for(int i=;i<;i++) if(t.p[i].x==x&&t.p[i].y==y) return true; //此处是球
return false;
}
bool AddNode(node& t,int i,int j,int k)
{
int x=t.p[i].x;
int y=t.p[i].y;
int nx=x+dx[j];
int ny=y+dy[j];
if(!in(nx,ny)) return false; //出界
if(Has(t,nx,ny)) nx+=dx[j],ny+=dy[j]; //有球
if(!in(nx,ny)) return false; //出界
if(Has(t,nx,ny)) return false; //还有球
node& tt=nod[k][r[k]];
tt=t;
tt.p[i].x=nx; tt.p[i].y=ny;
sort(tt.p,tt.p+); //排序
int a=Insert_Hash(GetHash(tt.p),k,r[k]);
if(a==) return true; //找到解
else if(a==-) r[k]++; //增加新节点
return false;
}
bool bfs(int k)
{
int en=r[k];
while(f[k]<en)
{
node& t=nod[k][f[k]++];
for(int i=;i<;i++) //4个球4个方向
for(int j=;j<;j++) if(AddNode(t,i,j,k)) return true;
}
return false;
}
bool solve()
{
if(Same(,,,)) return true; //相同
int step=;
f[]=f[]=; r[]=r[]=;
for(int i=;i<mod;i++) ha[i].next=-;
hash_id=mod-;
Insert_Hash(GetHash(nod[][].p),,);
Insert_Hash(GetHash(nod[][].p),,);
while(f[]<r[]||f[]<r[])
{
if(step>=) return false;
step++;
if(bfs()) return true;
if(bfs()) return true;
}
return false;
}
int main()
{
int x,y;
while(scanf("%d%d",&x,&y)!=EOF)
{
nod[][].p[]=point(x,y);
for(int i=;i<;i++)
{
scanf("%d%d",&x,&y);
nod[][].p[i]=point(x,y);
}
for(int i=;i<;i++)
{
scanf("%d%d",&x,&y);
nod[][].p[i]=point(x,y);
}
sort(nod[][].p,nod[][].p+);
sort(nod[][].p,nod[][].p+);
if(solve()) printf("YES\n");
else printf("NO\n");
}
return ;
}