BZOJ 3384 上帝与集合的正确用法

时间:2023-03-10 05:33:29
BZOJ 3384 上帝与集合的正确用法

上帝与集合的正确用法

【问题描述】

BZOJ 3384 上帝与集合的正确用法

【输入格式】

第一行一个T,接下来T行,每行一个正整数p,代表你需要取模的值。

【输出格式】

T行,每行一个正整数,为答案对p取模后的值。

【样例输入】

3
2
3
6

【样例输出】

0
1
4

【数据范围】

对于100%的数据,T<=1000,p<=10^7

题解:
 BZOJ 3384 上帝与集合的正确用法

①->②:把模数 p 拆成 2kq 的形式,其中 q 是奇数

②->③:

BZOJ 3384 上帝与集合的正确用法

将上式左右同除以2k

BZOJ 3384 上帝与集合的正确用法

不会同余的蒟蒻只能这么推了

③->④:

此时 q 是奇数,必定与 2n 互质

则套用欧拉定理

考虑一个数的 phi 必定比它本身的值小

那么如此递归下去模数会变为 1,则返回 0

回溯得到答案

 #include<cmath>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int n;
inline void Scan(int &x)
{
char c;
bool o = false;
while(!isdigit(c = getchar())) o = (c != '-') ? o : true;
x = c - '';
while(isdigit(c = getchar())) x = x * + c - '';
if(o) x = -x;
}
int Phi(int x)
{
int ans = x;
for(int i = ; i * i <= x; ++i)
{
if(!(x % i))
{
while(!(x % i)) x /= i;
ans /= i, ans *= (i - );
}
}
if(x ^ ) ans /= x, ans *= (x - );
return ans;
}
int Pow(int x, int n, int mod)
{
int sum = ;
while(n)
{
if(n & ) sum = (long long) sum * x % mod;
x = (long long) x * x % mod;
n >>= ;
}
return sum % mod;
}
int Work(int p)
{
if(p == ) return ;
int k = ;
while(!(p & )) p >>= , ++k;
int phi = Phi(p);
int s = (Work(phi) - k) % phi;
if(s < ) s += phi;
return Pow(, s, p) << k;
}
int main()
{
Scan(n);
int p;
for(int i = ; i <= n; ++i)
{
Scan(p);
printf("%d\n", Work(p));
}
}