迪杰斯特拉算法(Dijkstra):求一点到另外一点的最短距离
两种实现方法:
邻接矩阵,时间复杂度O(n^2)
邻接表+优先队列,时间复杂度O(mlogn)(适用于稀疏图)
(n:图的节点数,m:图的边数)
leetcode经典例题:
(1)
743. 网络延迟时间
https://leetcode-cn.com/problems/network-delay-time/ 邻接矩阵,时间复杂度O(n^2)
class Solution {
public:
int networkDelayTime(vector<vector<int>>& times, int N, int K) {
vector<int> visit(N,0);
vector<vector<int>> d(N, vector<int>(N,INT_MAX));
for(auto& t:times)
{
d[t[0]-1][t[1]-1] = t[2];
}
if(N==1)
return 0; int result=-1; visit[K-1] = 1;
for(int i=0;i<N-1;i++)
{
int k, min_v = INT_MAX;
for(int j=0;j<N;j++)
{;
if(visit[j]==0 && d[K-1][j]<min_v)
{
min_v = d[K-1][j];
k = j;
}
}
if(min_v == INT_MAX)
{
result = -1;
break;
} if(min_v >result)
result = min_v; visit[k] = 1;
for(int j=0;j<N;j++)
{
//cout<<"second j:"<<j<<endl;
if(visit[j]==0 && d[k][j]!=INT_MAX)
{
if(d[K-1][j] > d[K-1][k]+d[k][j])
d[K-1][j] = d[K-1][k]+d[k][j];
}
} } return result;
}
};
(2)
1514. 概率最大的路径
https://leetcode-cn.com/problems/path-with-maximum-probability/ 邻接表+优先队列,时间复杂度O(mlogn)
class Solution {
public:
double maxProbability(int n, vector<vector<int>>& edges, vector<double>& succProb, int start, int end) {
vector<int> visit(n,0);
vector<vector<pair<double, int>>> neighbor(n);
for(int i=0;i<edges.size();i++)
{
neighbor[edges[i][0]].push_back({succProb[i], edges[i][1]});
neighbor[edges[i][1]].push_back({succProb[i], edges[i][0]});
}
vector<double> d(n,0);
d[start] = 1; typedef pair<double,int> P;
priority_queue<P, vector<P>, less<P>> q; //最大堆,因为是要求概率值最大,如果是路径最短,应该用最小堆
q.push({1,start});
while(!q.empty())
{
auto t = q.top();
q.pop();
if(visit[t.second] == 1)
continue; visit[t.second] = 1;
for(auto& i:neighbor[t.second])
{
if(visit[i.second]==0 && d[i.second]< d[t.second]*i.first)
{
d[i.second] = d[t.second]*i.first;
q.push({d[i.second], i.second});
}
}
}
return d[end];
}
};