Merge k sorted linked lists and return it as one sorted list. Analyze and describe its complexity.
Example:
Input:
[
1->4->5,
1->3->4,
2->6
]
Output: 1->1->2->3->4->4->5->6 Solution 1:
Time: O(Nlgk)
Space: O(N)
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
class Solution {
public ListNode mergeKLists(ListNode[] lists) {
if (lists == null || lists.length == 0) {
return null;
}
ListNode dummy = new ListNode(-1);
ListNode cur = dummy;
PriorityQueue<ListNode> pq = new PriorityQueue<>(lists.length, (a, b) -> a.val - b.val);
// need to check list null as well
for(ListNode list: lists) {
if (list != null) {
pq.add(list);
}
}
while(!pq.isEmpty()) {
ListNode node = pq.poll();
cur.next = node;
cur = cur.next;
if (node.next != null) {
pq.add(node.next);
}
}
return dummy.next;
}
}
solution 2:
Time: O(Nlgk)
Space: O(N)
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
class Solution {
public ListNode mergeKLists(ListNode[] lists) {
if (lists == null || lists.length == 0) {
return null;
}
ListNode res = sort(lists, 0, lists.length - 1);
return res;
} private ListNode sort(ListNode[] lists, int low, int high) {
if (low >= high) {
return lists[high];
}
int mid = low + (high - low) / 2;
ListNode left = sort(lists, low, mid);
ListNode right = sort(lists, mid + 1, high);
return merge(left, right);
} private ListNode merge(ListNode aNode, ListNode bNode) {
if (aNode == null) {
return bNode;
}
if (bNode == null) {
return aNode;
}
if (aNode.val <= bNode.val) {
aNode.next = merge(aNode.next, bNode);
return aNode;
} else {
bNode.next = merge(aNode, bNode.next);
return bNode;
}
}
}