With dsu on tree we can answer queries of this type:
How many vertices in subtree of vertex v
has some property in O(n lg n) time (for all of the queries).
For example:
Given a tree, every vertex has color. Query is how many vertices in subtree of vertex v
are colored with color c
?
要点:记录每棵子树的大小,启发式合并。
模板整理如下:
1. easy to code but
//O(nlognlogn)
map<int, int> *cnt[maxn];
void dfs(int v, int p){
int mx = -, bigChild = -;
for(auto u : g[v])
if(u != p){
dfs(u, v);
if(sz[u] > mx)
mx = sz[u], bigChild = u;
}
if(bigChild != -)
cnt[v] = cnt[bigChild];
else
cnt[v] = new map<int, int> ();
(*cnt[v])[ col[v] ] ++;
for(auto u : g[v])
if(u != p && u != bigChild){
for(auto x : *cnt[u])
(*cnt[v])[x.first] += x.second;
}
//now (*cnt)[c] is the number of vertices in subtree of vertex v that has color c. You can answer the queries easily. }
2. easy to code and
vector<int> *vec[maxn];
int cnt[maxn];
void dfs(int v, int p, bool keep){
int mx = -, bigChild = -;
for(auto u : g[v])
if(u != p && sz[u] > mx)
mx = sz[u], bigChild = u;
for(auto u : g[v])
if(u != p && u != bigChild)
dfs(u, v, );
if(bigChild != -)
dfs(bigChild, v, ), vec[v] = vec[bigChild];
else
vec[v] = new vector<int> ();
vec[v]->push_back(v);
cnt[ col[v] ]++;
for(auto u : g[v])
if(u != p && u != bigChild)
for(auto x : *vec[u]){
cnt[ col[x] ]++;
vec[v] -> push_back(x);
}
//now (*cnt)[c] is the number of vertices in subtree of vertex v that has color c. You can answer the queries easily.
// note that in this step *vec[v] contains all of the subtree of vertex v.
if(keep == )
for(auto u : *vec[v])
cnt[ col[u] ]--;
}
3. heavy-light decomposition style
int cnt[maxn];
bool big[maxn];
void add(int v, int p, int x){
cnt[ col[v] ] += x;
for(auto u: g[v])
if(u != p && !big[u])
add(u, v, x)
}
void dfs(int v, int p, bool keep){
int mx = -, bigChild = -;
for(auto u : g[v])
if(u != p && sz[u] > mx)
mx = sz[u], bigChild = u;
for(auto u : g[v])
if(u != p && u != bigChild)
dfs(u, v, ); // run a dfs on small childs and clear them from cnt
if(bigChild != -)
dfs(bigChild, v, ), big[bigChild] = ; // bigChild marked as big and not cleared from cnt
add(v, p, );
//now cnt[c] is the number of vertices in subtree of vertex v that has color c. You can answer the queries easily.
if(bigChild != -)
big[bigChild] = ;
if(keep == )
add(v, p, -);
}
4. My invented style
This implementation for "Dsu on tree" technique is new and invented by me. This implementation is easier to code than others. Let st[v] dfs starting time of vertex v, ft[v] be it's finishing time and ver[time] is the vertex which it's starting time is equal to time. int cnt[maxn];
void dfs(int v, int p, bool keep){
int mx = -, bigChild = -;
for(auto u : g[v])
if(u != p && sz[u] > mx)
mx = sz[u], bigChild = u;
for(auto u : g[v])
if(u != p && u != bigChild)
dfs(u, v, ); // run a dfs on small childs and clear them from cnt
if(bigChild != -)
dfs(bigChild, v, ); // bigChild marked as big and not cleared from cnt
for(auto u : g[v])
if(u != p && u != bigChild)
for(int p = st[u]; p < ft[u]; p++)
cnt[ col[ ver[p] ] ]++;
cnt[ col[v] ]++;
//now cnt[c] is the number of vertices in subtree of vertex v that has color c. You can answer the queries easily.
if(keep == )
for(int p = st[v]; p < ft[v]; p++)
cnt[ col[ ver[p] ] ]--;
}
时间复杂度分析
4. My invented style
考虑每个节点最多会被清零几次?
显然被清零的次数即为该节点到根节点的链上轻儿子的个数
联系树链剖分,任意一个节点到根节点的链最多被划分为O(logn)段重链,最多被清零O(logn)次.
故时间复杂度为O(nlogn).
2, 3, 4时间复杂度分析类似.
启发式合并算法复杂度总结
线段树合并 => O(nlogU), U为线段树权值域,从势能分析,合并的复杂度为O(总节点数减小的个数)
平衡树合并+树链剖分+单次插入删除O(logn) => O(nlognlogn)
平衡树合并+树链剖分+单次插入删除O(1) => O(nlogn)
set合并 => O(nlognlogn), 显然set合并复杂度不会高于multiset(平衡树)合并复杂度