【GDOI2014模拟】JZOJ2020年8月14日T2 网格

时间:2023-03-10 04:29:56
【GDOI2014模拟】JZOJ2020年8月14日T2 网格

【GDOI2014模拟】JZOJ2020年8月14日T2 网格

题目

Time and Memory Limits

【GDOI2014模拟】JZOJ2020年8月14日T2 网格

Description

某城市的街道呈网格状,左下角坐标为A(0, 0),右上角坐标为B(n, m),其中n >= m。现在从A(0, 0)点出发,只能沿着街道向正右方或者正上方行走,且不能经过图示中直线左上方的点,即任何途径的点(x, y)都要满足x >= y,请问在这些前提下,到达B(n, m)有多少种走法。

【GDOI2014模拟】JZOJ2020年8月14日T2 网格

Input

输入文件中仅有一行,包含两个整数n和m,表示城市街区的规模。

Output

输出文件中仅有一个整数和一个换行/回车符,表示不同的方案总数。

Sample Input

输入1:

6 6

输入2:

5 3

Sample Output

输出1:

132

输出2:

28

Data Constraint

50%的数据中,n = m,在另外的50%数据中,有30%的数据:1 <= m < n <= 100

100%的数据中,1 <= m <= n <= 5 000

题解

题意

给出一个笛卡尔坐标系

问在满足任何途径的点\((x,y)\)都满足\(x≥y\)的情况下,从\((0,0)\)走到\((n,m)\)有多少种走法

分析

注意到\(n,m\)都是5000的,而且空间很小

普通的\(n*m\)暴力\(DP\)不可以

发现有个要求

找规律发现

\[Ans=C_{n+m}^m-C_{n+m}^{m-1}
\]

那么高精度安排即可

但是又要打减、乘、除,十分麻烦

尝试化简

设\(a=n+m\),\(b=m\)

\[Ans=C_{n+m}^m-C_{n+m}^{m-1}\\=C_a^b-c_a^{b-1}\\=\dfrac{a!}{b!(a-b)!}-\dfrac{a!}{(b-1)!(a-b+1)!}\\=\dfrac{a!(a-b+1)}{b!(a-b+1)!}-\dfrac{a!b}{b!(a-b+1)!}\\=\dfrac{a!(a-2b+1)}{b!(a-b+1)!}\\=\dfrac{(n+m)!(n-m+1)}{m!(n+1)!}
\]

那么就可以质因数分解然后相乘即可

Code

#include<bits/stdc++.h>
#define rg register
using namespace std;
long long n,m,x,tot[100005],ans[1000005];
bool b[100005];
inline long long read()
{
long long res=0;char ch;
ch=getchar();
while (ch<'0'||ch>'9') ch=getchar();
while (ch>='0'&&ch<='9')
{
res=(res<<1)+(res<<3)+(ch-'0');
ch=getchar();
}
return res;
}
int main()
{
n=read();m=read();
memset(b,true,sizeof(b));
b[1]=false;
for (rg long long i=2;i<=100005;i++)
for (rg long long j=2;j*i<=100005;j++)
b[i*j]=false;
x=n+1-m;
for (rg long long i=2;i*i<=x;i++)
{
if (b[i]==true&&x%i==0)
{
while (x%i==0)
{
tot[i]++;
x/=i;
}
}
}
if (x>1) tot[x]++;
for (rg long long j=2;j<=n+m;j++)
{
long long k=j;
for (rg long long i=2;i*i<=k;i++)
{
if (b[i]==true&&k%i==0)
{
while (k%i==0)
{
tot[i]++;
k/=i;
}
}
}
if (k>1) tot[k]++;
}
for (rg long long j=2;j<=m;j++)
{
long long k=j;
for (rg long long i=2;i*i<=k;i++)
{
if (b[i]==true&&k%i==0)
{
while (k%i==0)
{
tot[i]--;
k/=i;
}
}
}
if (k>1) tot[k]--;
}
for (rg long long j=2;j<=n+1;j++)
{
long long k=j;
for (rg long long i=2;i*i<=k;i++)
{
if (b[i]==true&&k%i==0)
{
while (k%i==0)
{
tot[i]--;
k/=i;
}
}
}
if (k>1) tot[k]--;
}
ans[0]=1;
ans[1]=1;
for (rg long long i=1;i<=100000;i++)
{
if (b[i]==true&&tot[i]>0)
{
for (rg long long j=1;j<=tot[i];j++)
{
for (rg long long k=1;k<=ans[0];k++)
ans[k]*=i;
x=0;
for (rg long long k=1;k<=ans[0];k++)
{
ans[k]+=x;
x=ans[k]/10;
ans[k]%=10;
}
ans[ans[0]+1]=x;
while (ans[ans[0]+1])
{
ans[0]++;
ans[ans[0]+1]=ans[ans[0]]/10;
ans[ans[0]]%=10;
}
}
}
}
for (rg long long i=ans[0];i>=1;i--)
printf("%lld",ans[i]);
return 0;
}