bzoj 2739 最远点——分治处理决策单调性

时间:2023-03-10 03:57:06
bzoj 2739 最远点——分治处理决策单调性

题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2739

分治处理决策单调性的思想就是先找到一个询问,枚举所有可能的转移找到它的决策点,那么这个询问之前的询问的决策点就是在该决策点之前(含)的,这个询问之后的询问的决策点就是在该决策点之后(含)的。

但是有那个“(含)”,所以复杂度可能被卡?

#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
int rdn()
{
int ret=;bool fx=;char ch=getchar();
while(ch>''||ch<''){if(ch=='-')fx=;ch=getchar();}
while(ch>=''&&ch<='')ret=ret*+ch-'',ch=getchar();
return fx?ret:-ret;
}
ll Sqr(int a){return (ll)a*a;}
const int N=5e5+;
int n,x[N<<],y[N<<],ans[N];
bool cz(int bh,int u,int v)
{
if(u<bh||u>bh+n)return false;//u<bh!!! u>.. not u>=...
if(v<bh||v>bh+n)return true;
ll a=Sqr(x[u]-x[bh])+Sqr(y[u]-y[bh]);
ll b=Sqr(x[v]-x[bh])+Sqr(y[v]-y[bh]);
return a>b;
}
void solve(int l,int r,int L,int R)
{
if(l>r)return; int mid=l+r>>,ret=L;
for(int i=L+;i<=R;i++)if(cz(mid,i,ret))ret=i;
ans[mid]=ret;
solve(l,mid-,L,ret); solve(mid+,r,ret,R);
}
int main()
{
int T=rdn();
while(T--)
{
n=rdn();
for(int i=;i<=n;i++)
x[i]=x[i+n]=rdn(), y[i]=y[i+n]=rdn();
solve(,n,,n<<);
for(int i=;i<=n;i++)printf("%d\n",ans[i]>n?ans[i]-n:ans[i]);
}
return ;
}