贪玩ML系列之一个BP玩一天

时间:2023-03-10 03:39:20
贪玩ML系列之一个BP玩一天

手写串行BP算法,可调batch_size

既要:1、输入层f(x)=x  隐藏层sigmoid 输出层f(x)=x

2、run函数实现单条数据的一次前馈

3、train函数读入所有数据for循环处理每条数据。

循环中:

首先调用run函数,得到各层的值

self.input_nodes_value

self.hidden_nodes_value

self.output_nodes_value

然后计算输出层误差和delta

4、关键函数:用于前馈的sigmoid和用于反馈的sigmoid的导数

 self.activation_function = lambda x : 1/(1+np.exp(-x))  # sigmoid函数,用于正向传播
self.delta_activation_function = lambda x: x-x**2 # sigmoid一阶导,用于反向传播

5、反向传播

使用梯度下降方法

下面是推导隐藏层(实际上为relu层)到输出层的权重w[h][o]的梯度下降公式的过程,对应的几个变量在下面的代码中用红色标出

关于梯度下降公式推导:

https://blog.****.net/wfei101/article/details/80807749

https://www.jianshu.com/p/17191c57d7e9

贪玩ML系列之一个BP玩一天

batch_size=1

# 输入层没有激活函数f(x)=x,隐藏层激活函数sigmoid,输出层激活函数f(x)=x
class NeuralNetwork(object):
def __init__(self, input_nodes, hidden_nodes, output_nodes, learning_rate): # 各层节点个数
self.input_nodes = input_nodes
self.hidden_nodes = hidden_nodes
self.output_nodes = output_nodes # 创建三个一维数组存放三层节点的值
# print(str(self.input_nodes)+" "+str(self.hidden_nodes)+" "+str(self.output_nodes))
self.input_nodes_value=[0.0]*input_nodes
self.hidden_nodes_value=[0.0]*hidden_nodes
self.output_nodes_value=[0.0]*output_nodes # Initialize weights
self.weights_input_to_hidden = np.random.normal(0.0, self.input_nodes**-0.5, (self.input_nodes, self.hidden_nodes))#输入层>>隐藏层权重矩阵 self.weights_hidden_to_output = np.random.normal(0.0, self.hidden_nodes**-0.5, (self.hidden_nodes, self.output_nodes))#隐藏层>>输出层权重矩阵 self.learning_rate = learning_rate#学习率 self.activation_function = lambda x : 1/(1+np.exp(-x)) # sigmoid函数,用于正向传播
self.delta_activation_function = lambda x: x-x**2 # sigmoid一阶导,用于反向传播 self.change_to_fix_weights_h2o=[[0.0]*self.output_nodes]*self.hidden_nodes#存储隐藏层>>输出层权重调整量
self.change_to_fix_weights_i2h=[[0.0]*self.hidden_nodes]*self.input_nodes#存储输入层>>隐藏层权重调整量
# print("xxxx")
# print(self.change_to_fix_weights_h2o)
# print(self.change_to_fix_weights_i2h) def train(self, features, targets):#完成n条数据的一次前向传递和反向传递,每个batch调整一次权重矩阵
'''
features: 2D array, each row is one data record, each column is a feature
targets: 1D array of target values '''
n=features.shape[0]#数据条数
# print(features)
# print(targets) counter=batch_size
for ii in range(0,n): self.run(features[ii])#调用前向传播 print(self.output_nodes_value) error_o=[0.0]*self.output_nodes#输出层误差
error_h=[0.0]*self.hidden_nodes#隐藏层误差
output_deltas=[0.0]*self.output_nodes
hidden_deltas=[0.0]*self.hidden_nodes for o in range(self.output_nodes): # 输 出 层
error_o[o]=targets[ii][o]-self.output_nodes_value[o]#计算输出层误差
# output_deltas[o]=self.delta_activation_function(self.output_nodes_value[o])*error_o[o]#输出层反向传播(求导)
output_deltas[o]=1*error_o[o]#输出层反向传播(求导) for h in range(self.hidden_nodes): # 隐 藏 层
for o in range(self.output_nodes):
# print('weight::',self.weights_hidden_to_output[h][o])
error_h[h]+=output_deltas[o]*self.weights_hidden_to_output[h][o]#计算隐藏层误差 # print('....')
# print(self.hidden_nodes_value[h])
# print(error_h[h])
hidden_deltas[h]=self.delta_activation_function(self.hidden_nodes_value[h])*error_h[h]#隐藏层反向传播
# print(hidden_deltas[h]) for h in range(self.hidden_nodes):
for o in range(self.output_nodes):
self.change_to_fix_weights_h2o[h][o]+=output_deltas[o]*self.hidden_nodes_value[h]#累计隐藏层>>输出层的权重矩阵的调整量 for i in range(self.input_nodes):
for h in range(self.hidden_nodes):
# print("......")
# print(hidden_deltas[h])
# print(self.input_nodes_value[i])
# print(self.change_to_fix_weights_i2h[i][h])
self.change_to_fix_weights_i2h[i][h]+=hidden_deltas[h]*self.input_nodes_value[i]#累计输入层>>隐藏层的权重矩阵的调整量 counter-=1
if counter==0:#完成一个batch的输入和计算后,调整一次权重
#调整隐藏层>>输出层权重
for h in range(self.hidden_nodes):
for o in range(self.output_nodes):
self.weights_hidden_to_output[h][o] += self.learning_rate*self.change_to_fix_weights_h2o[h][o] #调整输入层>>隐藏层权重
for i in range(self.input_nodes):
for h in range(self.hidden_nodes):
# print("......")
# print(self.weights_input_to_hidden[i][h])
# print(self.learning_rate)
# print(self.change_to_fix_weights_i2h[i][h])
self.weights_input_to_hidden[i][h] += self.learning_rate*self.change_to_fix_weights_i2h[i][h]
# print(self.weights_input_to_hidden[i][h])
#将权值调整量归零,计数器复位,开始输入下一个batch
self.change_to_fix_weights_h2o=[[0.0]*self.output_nodes]*self.hidden_nodes
self.change_to_fix_weights_i2h=[[0.0]*self.hidden_nodes]*self.input_nodes
counter=batch_size
return self.weights_hidden_to_output def run(self, features):#完成一条数据的一次前向传递
'''
features: 1D array of feature values
'''
# print(self.input_nodes_value)
for i in range(self.input_nodes):
self.input_nodes_value[i]=features[i]
# self.input_nodes_value[i]=self.activation_function(features[i])
# print(self.input_nodes_value) # print(self.hidden_nodes_value)
for h in range(self.hidden_nodes):
temp=0
for i in range(self.input_nodes):
temp+=self.input_nodes_value[i]*self.weights_input_to_hidden[i][h]
temp=self.activation_function(temp)
self.hidden_nodes_value[h]=temp
# print(self.hidden_nodes_value) # print(self.output_nodes_value)
for o in range(self.output_nodes):
temp=0
for h in range(self.hidden_nodes):
temp+=self.hidden_nodes_value[h]*self.weights_hidden_to_output[h][o]
# temp=self.activation_function(temp)
self.output_nodes_value[o]=temp
# print(self.output_nodes_value) return self.output_nodes_value

单元测试:

import unittest

inputs = np.array([[0.5, -0.2, 0.1]])
targets = np.array([[0.4]])
test_w_i_h = np.array([[0.1, -0.2],
[0.4, 0.5],
[-0.3, 0.2]])
test_w_h_o = np.array([[0.3],
[-0.1]]) class TestMethods(unittest.TestCase): ##########
# Unit tests for data loading
########## def test_data_path(self):
# Test that file path to dataset has been unaltered
self.assertTrue(data_path.lower() == 'bike-sharing-dataset/hour.csv') def test_data_loaded(self):
# Test that data frame loaded
self.assertTrue(isinstance(rides, pd.DataFrame)) ##########
# Unit tests for network functionality
########## def test_activation(self):
network = NeuralNetwork(3, 2, 1, 0.5)
# Test that the activation function is a sigmoid
self.assertTrue(np.all(network.activation_function(0.5) == 1/(1+np.exp(-0.5)))) def test_train(self):
# Test that weights are updated correctly on training
network = NeuralNetwork(3, 2, 1, 0.5)
network.weights_input_to_hidden = test_w_i_h.copy()
network.weights_hidden_to_output = test_w_h_o.copy() network.train(inputs, targets)
print('@@@@test_train')
print("$$$$$$$$1")
print(network.weights_hidden_to_output)
print(network.weights_input_to_hidden) # network.train(inputs,targets) # print("$$$$$$$$2")
# print(network.weights_hidden_to_output)
# print(network.weights_input_to_hidden) self.assertTrue(np.allclose(network.weights_hidden_to_output,
np.array([[ 0.37275328],
[-0.03172939]])))
self.assertTrue(np.allclose(network.weights_input_to_hidden,
np.array([[ 0.10562014, -0.20185996],
[0.39775194, 0.50074398],
[-0.29887597, 0.19962801]]))) def test_run(self):
# Test correctness of run method
network = NeuralNetwork(3, 2, 1, 0.5)
network.weights_input_to_hidden = test_w_i_h.copy()
network.weights_hidden_to_output = test_w_h_o.copy() self.assertTrue(np.allclose(network.run(inputs[0]), 0.09998924)) suite = unittest.TestLoader().loadTestsFromModule(TestMethods())
unittest.TextTestRunner().run(suite)

结果:

贪玩ML系列之一个BP玩一天

贪玩ML系列之一个BP玩一天

结果虽然比较接近,但是代码比较丑陋,并没有用numpy的矩阵相乘,而是用for循环实现了矩阵乘法,代码复杂,而且都是串行的。