《数据结构与算法分析——C语言描述》ADT实现(NO.05) : 散列(Hash)

时间:2023-03-10 02:44:20
《数据结构与算法分析——C语言描述》ADT实现(NO.05) : 散列(Hash)

散列(Hash)是一种以常数复杂度实现查找功能的数据结构。它将一个关键词Key,通过某种映射(哈希函数)转化成索引值直接定位到相应位置。

实现散列有两个关键,一是哈希函数的选择,二是冲突的处理。

对于哈希函数,例程中以“Key为int型,操作为取(关于表长的)模”为例。事实上,可以直接将其换成任何一个哈希函数,不会影响实现。

对于冲突处理,有两大类处理方案,一是分离链接法,二是开放定址法。开放定址法包括线性探测法、平方探测法、双散列法等,本文给出分离链接法和平方探测法的实现。

1. 分离链接法:

// HashSep.h

#include <stdio.h>
#include <stdlib.h> struct ListNode;
typedef struct ListNode *Position;
struct HashTbl;
typedef struct HashTbl *HashTable; typedef Position List; HashTable InitializeTable(int TableSize);
void DestroyTable(HashTable H);
Position Find(ElementType Key, HashTable H);
void Insert(ElementType Key, HashTable H);

  

// HashSep.c

#include "HashSep.h"

struct ListNode
{
ElementType Key;
Position Next;
}; struct HashTbl
{
int TableSize;
List *TheLists;
}; int NextPrime(int N)
{
if (N % 2 == 0)
N++;
int i;
int NotPrime = 0;
for (;; N += 2)
{
NotPrime = 0;
for (i = 3; i * i <= N; i += 2)
if (N % i == 0)
{
NotPrime = 1;
break;
}
if (!NotPrime)
return N;
}
} int Hash(ElementType Key, int TableSize)
{
return Key * Key % 10;
} HashTable InitializeTable(int TableSize)
{
HashTable H;
int i;
if ((H = (HashTable)malloc(sizeof(struct HashTbl))) == NULL)
{
printf("Error! Out of memory! \n");
return NULL;
}
H->TableSize = NextPrime(TableSize);
H->TheLists = (Position *)malloc(H->TableSize * sizeof(Position));
for (i = 0; i < H->TableSize; i++)
{
if ((H->TheLists[i] = (List)malloc(sizeof(struct ListNode))) == NULL)
{
printf("Error! Out of memory! \n");
return NULL;
}
H->TheLists[i]->Next = NULL;
}
return H;
} void DestroyTable(HashTable H)
{
int i;
for (i = 0; i < H->TableSize; i++)
{
Position p, q;
q = H->TheLists[i];
p = q->Next;
while(p)
{
free(q);
q = p;
p = p->Next;
}
}
free(H);
} int Same(ElementType e1, ElementType e2)
{
return e1 == e2;
} Position Find(ElementType Key, HashTable H)
{
Position p;
p = H->TheLists[Hash(Key, H->TableSize)]->Next;
while(p)
{
if(Same(p->Key, Key))
break;
p = p->Next;
}
return p;
} void Insert(ElementType Key, HashTable H)
{
Position p;
List L;
if(Find(Key, H) != NULL)
return;
if((p = (Position)malloc(sizeof(struct ListNode))) == NULL)
{
printf("Error! Out of memory! \n");
return;
}
p->Key = Key;
L = H->TheLists[Hash(Key, H->TableSize)];
p->Next = L->Next;
L->Next = p;
}

  

2. 平方探测法

// HashQuad.h

#include <stdio.h>
#include <stdlib.h> typedef unsigned int Index;
typedef Index Position; struct HashTbl;
typedef struct HashTbl *HashTable; typedef struct HashEntry Cell; HashTable InitializeTable(int TableSize);
void DestroyTable(HashTable H);
Position Find(ElementType Key, HashTable H);
void Insert(ElementType Key, HashTable H);
ElementType Retrieve(Position P, HashTable H);
HashTable ReHash(HashTable H);

  

// HashQuad.c

#include "HashQuad.h"

enum KindOfEntry
{
Legitimate,
Empty,
Deleted
}; struct HashEntry
{
ElementType Element;
enum KindOfEntry Info;
}; struct HashTbl
{
int TableSize;
Cell *TheCells;
}; int NextPrime(int N)
{
if (N % 2 == 0)
N++;
int i;
int NotPrime = 0;
for (;; N += 2)
{
NotPrime = 0;
for (i = 3; i * i <= N; i += 2)
if (N % i == 0)
{
NotPrime = 1;
break;
}
if (!NotPrime)
return N;
}
} Index Hash(ElementType Key, int TableSize)
{
return Key % TableSize;
} HashTable InitializeTable(int TableSize)
{
HashTable H;
int i;
if ((H = (HashTable)malloc(sizeof(struct HashTbl))) == NULL)
{
printf("Error!\n");
return NULL;
}
H->TableSize = NextPrime(TableSize);
if ((H->TheCells = (Cell *)malloc(sizeof(Cell) * H->TableSize)) == NULL)
{
printf("Error!\n");
return NULL;
}
for (i = 0; i < H->TableSize; i++)
H->TheCells[i].Info = Empty;
return H;
} void DestroyTable(HashTable H)
{
free(H->TheCells);
free(H);
} Position Find(ElementType Key, HashTable H)
{
Index id = Hash(Key, H->TableSize);
int i = 0;
while (H->TheCells[id].Info == Legitimate && H->TheCells[id].Element != Key)
{
id += (++i << 1) - 1;
if (id >= H->TableSize)
id -= H->TableSize;
}
return id;
} void Insert(ElementType Key, HashTable H)
{
Position p = Find(Key, H);
if (H->TheCells[p].Info != Legitimate)
{
H->TheCells[p].Element = Key;
H->TheCells[p].Info = Legitimate;
}
} ElementType Retrieve(Position P, HashTable H)
{
return H->TheCells[P].Element;
} HashTable ReHash(HashTable H)
{
int i;
int OldSize;
Cell *OldCells;
OldCells = H->TheCells;
OldSize = H->TableSize;
H = InitializeTable(2 * OldSize);
for(i = 0; i < H->TableSize; i++)
if(OldCells[i].Info == Legitimate)
Insert(OldCells[i].Element, H);
free(OldCells);
return H;
}