Permutation p is an ordered set of integers p1, p2, ..., pn, consisting of n distinct positive integers, each of them doesn't exceed n. We'll denote the i-th element of permutation p as pi. We'll call number n the size or the length of permutation p1, p2, ..., pn.
We'll call position i (1 ≤ i ≤ n) in permutation p1, p2, ..., pn good, if |p[i] - i| = 1. Count the number of permutations of size n with exactly k good positions. Print the answer modulo 1000000007 (109 + 7).
The single line contains two space-separated integers n and k (1 ≤ n ≤ 1000, 0 ≤ k ≤ n).
Output
Print the number of permutations of length n with exactly k good positions modulo 1000000007 (109 + 7).
Examples
1 0
1
2 1
0
3 2
4
4 1
6
7 4
328
Note
The only permutation of size 1 has 0 good positions.
Permutation (1, 2) has 0 good positions, and permutation (2, 1) has 2 positions.
Permutations of size 3:
- (1, 2, 3) — 0 positions
-
— 2 positions
-
— 2 positions
-
— 2 positions
-
— 2 positions
- (3, 2, 1) — 0 positions
题意:给定N,M,让你求有多少N的排列,使得|a[i]-i|==1的个数为M。
思路:用dp[i][j][now][next];表示前面i个有j个满足上述条件,而且第i为和第i+1位被占的情况位now和next。那么不难写出方程。
但是我写出代码后,发现(2,1)是错的,我输出2,答案是0;因为不可能只有1个在临位。那可以发现,现在是dp[N][M][now][next]*(N-j)!代表的结果是大于M的,还需要容斥。
容斥:dp[N][M]的贡献,减去dp[N][M+1]的贡献,加上...
可以发现,每一个好的位置有M+1个的排列,再算有j个的排列时都会被算M+1次(因为对于这个j+1排列,每一个好位置被无视掉以后都会构成一个j排列)
同理,每一个好的位置有j+2个的排列则会再算j个的排列时重复C(M+2,2)
.... 每一个好的位置有j个的排列会在算i(i < j)的排列时被计算C(M+j,M);
即dp[N][M+j]的系数C(M+j,M);
#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
const int maxn=;
const int Mod=1e9+;
int dp[maxn][maxn][][],fac[maxn],rev[maxn];
int qpow(int a,int x)
{
int res=; while(x){
if(x&) res=1LL*res*a%Mod;
x>>=; a=1LL*a*a%Mod;
} return res;
}
int C(int N,int M) { return 1LL*fac[N]*rev[M]%Mod*rev[N-M]%Mod;}
int main()
{
int N,M;
scanf("%d%d",&N,&M);
fac[]=; rev[]=;
rep(i,,N) fac[i]=1LL*fac[i-]*i%Mod;
rev[N]=qpow(fac[N],Mod-);
for(int i=N-;i>=;i--) rev[i]=1LL*rev[i+]*(i+)%Mod;
dp[][][][]=;
rep(i,,N-) {
rep(j,,i){
rep(p,,){
rep(q,,){
if(!dp[i][j][p][q]) continue;
if(p==&&i) (dp[i+][j+][q][]+=dp[i][j][p][q])%=Mod; //i+1放左边
(dp[i+][j+][q][]+=dp[i][j][p][q])%=Mod; //放右边
(dp[i+][j][q][]+=dp[i][j][p][q])%=Mod; //两边都不放
}
}
}
}
int ans=;
rep(i,M,N){
int tmp=1LL*(dp[N][i][][]+dp[N][i][][])%Mod*C(i,M)%Mod*fac[N-i]%Mod;
if((i-M)%==) {
ans+=tmp;
if(ans>=Mod) ans-=Mod;
}
else{
ans-=tmp;
if(ans<) ans+=Mod;
}
}
printf("%d\n",ans);
return ;
}