poj1847 Tram(Dijkstra || Floyd || SPFA)

时间:2023-03-10 01:46:17
poj1847 Tram(Dijkstra || Floyd || SPFA)

题目链接

http://poj.org/problem?id=1847

题意

有n个车站,编号1~n,每个车站有k个出口,车站的出口默认是k个出口中的第一个,如果不想从默认出口出站,则需要手动选择出站口。现在从车站a出发,求最少需要手动选择几次出站口才能到车站b。

思路

这题的图中没有显式给出结点之间的距离,但可以根据题意给路径添加距离,比如测试数据中的“2 2 3”表示从第1个车站默认开往第2个车站,想要开到第3个车站则需手动选择,所以我们可以令结点1到结点2的边权值为0(默认车站),结点1到结点3边权值为1(需手动选择的车站),这样就可以使用Dijkstra算法、Floyd算法或者SPFA算法求解a,b之间的最短路,a,b之间最短路的值即是需手动选择车站的次数。

代码

Dijkstra算法和Floyd算法:

 #include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std; const int INF = 0x3f3f3f;
const int N = + ;
int map[N][N];
int dist[N];
int visit[N];
int n, a, b; void dijkstra() //Dijkstra算法
{
memset(visit, , sizeof(visit));
for (int i = ; i <= n; i++)
dist[i] = map[a][i];
dist[a] = ;
visit[a] = ;
int min_dist, now = a;
for (int i = ; i <= n; i++)
{
min_dist = INF;
for (int j = ; j <= n; j++)
{
if (!visit[j] && dist[j] < min_dist)
{
min_dist = dist[j];
now = j;
}
}
visit[now] = ;
for (int j = ; j <= n; j++)
dist[j] = min(dist[j], dist[now] + map[now][j]);
}
if (dist[b] >= INF) //注意是dist[b]>=INF,不是dist[b]==INF
puts("-1");
else printf("%d\n", dist[b]);
} void floyd() //Floyd算法
{
for (int k = ; k <= n; k++)
for (int i = ; i <= n; i++)
for (int j = ; j <= n; j++)
map[i][j] = min(map[i][j], map[i][k] + map[k][j]);
if (map[a][b] >= INF)
puts("-1");
else printf("%d\n", map[a][b]);
} int main()
{
//freopen("poj1847.txt", "r", stdin);
while (scanf("%d%d%d", &n, &a, &b) == )
{
memset(map, INF, sizeof(map));
int k, t;
for (int i = ; i <= n; i++)
{
scanf("%d", &k);
for (int j = ; j <= k; j++)
{
scanf("%d", &t);
if (j == )
map[i][t] = ;
else map[i][t] = ;
}
}
dijkstra();
//floyd();
}
return ;
}

SPFA算法:

 #include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
#include <vector>
#include <queue>
using namespace std; struct Edge
{
int s, e, dist; Edge() {}
Edge(int s, int e, int d) :s(s), e(e), dist(d) {}
}; const int INF = 0x3f3f3f;
const int N = + ;
vector<Edge> v[N];
int dist[N];
int visit[N];
int n, a, b; void spfa(int s)
{
queue<int> q;
memset(dist, INF, sizeof(dist));
memset(visit, , sizeof(visit));
q.push(s);
visit[s] = ;
dist[s] = ; while (!q.empty())
{
int s = q.front();
q.pop();
visit[s] = ;
for (int i = ; i < v[s].size(); i++)
{
int e = v[s][i].e;
if (dist[e] > dist[s] + v[s][i].dist)
{
dist[e] = dist[s] + v[s][i].dist;
if (!visit[e])
{
visit[e] = ;
q.push(e);
}
}
}
}
if (dist[b] >= INF)
puts("-1");
else printf("%d\n", dist[b]);
} int main()
{
//freopen("poj1847.txt", "r", stdin);
while (scanf("%d%d%d", &n, &a, &b) == )
{
for (int i = ; i <= n; i++)
v[i].clear(); int k, t;
for (int i = ; i <= n; i++)
{
scanf("%d", &k);
for (int j = ; j <= k; j++)
{
scanf("%d", &t);
if (j == )
v[i].push_back(Edge(i, t, ));
else v[i].push_back(Edge(i, t, ));
}
}
spfa(a); //求结点a到其余各点的最短路径
}
return ;
}