k=1:裸的快速幂
k=2:xy=z+kp,直接exgcd,这个可以不用解释了,不懂的同学可以看代码
k=2:xy=z+kp,直接exgcd,这个可以不用解释了,不懂的同学可以看代码
k=3:裸的BSGS
重点是k=3(BSGS学习)
ax=b(mod p)求解这个同余方程
只能求gcd(a,p)=1的情况。
如何求解?很容易发现解一定位于{0,p-1}之间,设q=ceil(√p),然后x可以表示成cq-d
因为ax=b(mod p),所以acq=b*ad(mod p)
于是可以这样考虑:枚举d∈[1,q],将值插入哈希表,如有重复的则只记录最大的d,因为本题是求最小解,再枚举c=1...q,查询acq是否在哈希表内,如果在就可以直接跳出来。
ax=b(mod p)求解这个同余方程
只能求gcd(a,p)=1的情况。
如何求解?很容易发现解一定位于{0,p-1}之间,设q=ceil(√p),然后x可以表示成cq-d
因为ax=b(mod p),所以acq=b*ad(mod p)
于是可以这样考虑:枚举d∈[1,q],将值插入哈希表,如有重复的则只记录最大的d,因为本题是求最小解,再枚举c=1...q,查询acq是否在哈希表内,如果在就可以直接跳出来。
注意要特判a或b等于0的情况就可以了。
不说太多了,直接上模板:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
map<int,int>hsh;
ll y,z,p;
ll qpow(ll a,ll b)
{
a%=p;
ll ret=;
while(b)
{
if(b&)ret=ret*a%p;
a=a*a%p,b>>=;
}
return ret;
}
ll exgcd(ll a,ll b,ll&x,ll&y)
{
if(b==){x=,y=;return a;}
ll ret=exgcd(b,a%b,y,x);y-=a/b*x;
return ret;
}
void solve2(ll a,ll b)
{
ll x,y,ans,d,s;
d=exgcd(a,p,x,y);
if(b%d){puts("Orz, I cannot find x!");return;}
ans=b/d*x;
s=p/d;
ans=(ans%s+s)%s;
printf("%lld\n",ans);
}
void solve3()
{
y%=p,z%=p;
if(!y)
{
if(!z)puts("");else puts("Orz, I cannot find x!");
return;
}
ll m=ceil(sqrt(p)),v=qpow(y,p-m-),e=,ret;
hsh.clear();
hsh[]=m+;
for(ll i=;i<=m;i++)
{
e=e*y%p;
if(!hsh[e])hsh[e]=i;
}
ret=-;
for(ll i=;i<m;i++)
{
if(hsh[z]){ret=i*m+(hsh[z]==m+?:hsh[z]);break;}
z=z*v%p;
}
if(ret==-)puts("Orz, I cannot find x!");
else printf("%d\n",ret);
}
int main()
{
int T,k;
scanf("%d%d",&T,&k);
while(T--)
{
scanf("%lld%lld%lld",&y,&z,&p);
if(k==)printf("%lld\n",qpow(y,z));
else if(k==)solve2(y,z);
else solve3();
}
}