Codeforces 834D The Bakery 【线段树优化DP】*

时间:2023-03-10 01:32:53
Codeforces 834D The Bakery 【线段树优化DP】*

Codeforces 834D The Bakery


LINK


题目大意是给你一个长度为n的序列分成k段,每一段的贡献是这一段中不同的数的个数,求最大贡献


是第一次做线段树维护DP值的题
感觉还可以,虽然看了一下这题是用线段树维护DP值

然后说思路
有一个很显然的思路是这样的:
dpi,j表示前i个数分成j段的最大贡献
dpi,j=max(dpk,j−1+calc(k+1,i))
然后我们就可以对于每一层j用线段树维护起来
然后就非常愉快地发现dp[i][p]只会从dp[i−1][p−1]之前的DP值进行转移
所以可以发现每次可以错位建立线段树

然后现在考虑怎么维护calc(k+1,i)
我们可以把一段区间的贡献拆成每个点的贡献
显然位置i的数会对左端点位置在pre[i]+1~i的所有点产生加一的贡献(因为考虑的右端点在i)
所以每次判断一下区间加区间求和就好了


 #include<bits/stdc++.h>
using namespace std;
#define N 350010
int a[N],b[N];
int dp[N][];
int las[N],pre[N];
int n,k;
namespace Segment_Tree{
#define MAXN N<<2
#define LD (t<<1)
#define RD (t<<1|1)
int maxv[MAXN],add[MAXN];
void pushup(int t){maxv[t]=max(maxv[LD],maxv[RD]);}
void pushdown(int t){
if(add[t]){
maxv[LD]+=add[t],add[LD]+=add[t];
maxv[RD]+=add[t],add[RD]+=add[t];
add[t]=;
}
}
void build(int t,int l,int r){
if(l>r)return;
add[t]=;
if(l==r){maxv[t]=a[l];return;}
int mid=(l+r)>>;
build(LD,l,mid);
build(RD,mid+,r);
pushup(t);
}
void modify(int t,int l,int r,int L,int R){
if(l>r)return;
if(L<=l&&r<=R){maxv[t]++;add[t]++;return;}
pushdown(t);
int mid=(l+r)>>;
if(R<=mid)modify(LD,l,mid,L,R);
else if(L>mid)modify(RD,mid+,r,L,R);
else{
modify(LD,l,mid,L,mid);
modify(RD,mid+,r,mid+,R);
}
pushup(t);
}
int query(int t,int l,int r,int L,int R){
if(l>r)return ;
if(L<=l&&r<=R)return maxv[t];
pushdown(t);
int mid=(l+r)>>;
int ans=;
if(R<=mid)ans=query(LD,l,mid,L,R);
else if(L>mid)ans=query(RD,mid+,r,L,R);
else ans=max(query(LD,l,mid,L,mid),query(RD,mid+,r,mid+,R));
pushup(t);
return ans;
}
};
int main(){
scanf("%d%d",&n,&k);
for(int i=;i<=n;i++)scanf("%d",&a[i]),b[i]=a[i];
sort(b+,b+n+);
int tot=unique(b+,b+n+)-b-;
for(int i=;i<=n;i++)a[i]=lower_bound(b+,b+tot+,a[i])-b;
for(int i=;i<=n;i++)pre[i]=las[a[i]],las[a[i]]=i;
for(int i=;i<=n;i++)dp[i][]=dp[i-][]+(int)(pre[i]==);
for(int j=;j<=k;j++){
for(int i=;i<=n;i++)a[i]=dp[i-][j-];
Segment_Tree::build(,,n);
for(int i=;i<=n;i++){
Segment_Tree::modify(,,n,pre[i]+,i);
dp[i][j]=Segment_Tree::query(,,n,,i);
}
}
printf("%d",dp[n][k]);
return ;
}