BZOJ3811 玛里苟斯(线性基+概率期望)

时间:2023-03-10 01:28:37
BZOJ3811 玛里苟斯(线性基+概率期望)

  k=1的话非常好做,每个有1的位都有一半可能性提供贡献。由组合数的一些性质非常容易证明。

  k=2的话,平方的式子展开可以发现要计算的是每一对位提供的贡献,于是需要计算每一对位被同时选中的概率。找出所有存在的相互绑定的位,这些位被同时选择的概率为0.5,而不被绑定的则为0.25。

  对于k>=3,其实用与k=1,2相同的方法大力讨论也可以做。考虑更优美的做法。有一个性质:集合内数相互异或不影响答案。证明比(bing)较(bu)显(hui)然(xie)。于是构造出线性基。可以发现线性基里的元素很少,暴搜一发即可。

  卡精度,不会证地有答案一定是整数或.5,全程整数各种乱搞即可。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define N 100010
#define ll unsigned long long
ll read()
{
ll x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,m,cnt=;
ll a[N],base[],b[];
bool flag[],f[][];
ll ans,tot;
void getbase()
{
for (int i=;i<=n;i++)
{
ll x=a[i];
for (int j=;~j;j--)
if (x&(1ll<<j))
if (base[j]) x^=base[j];
else {base[j]=x;break;}
}
for (int j=;~j;j--)
if (base[j]) b[++cnt]=base[j];
}
void solve1()
{
for (int i=;i<;i++) if (flag[i]) ans+=1ll<<i-;
cout<<ans;if (flag[]) cout<<".5";
}
void solve2()
{
for (int i=;i<;i++)
for (int j=;j<;j++)
f[i][j]=;
for (int i=;i<=n;i++)
for (int j=;j<;j++)
for (int k=j+;k<;k++)
if (((a[i]&(1ll<<j))>)^((a[i]&(1ll<<k))>)) f[j][k]=f[k][j]=;
for (int i=;i<;i++)
if (flag[i])
for (int j=;j<;j++)
if (flag[j])
{
if (!f[i][j]) ans+=(1ll<<i+j);
else ans+=(2ll<<i+j);
tot+=ans/,ans%=;
}
cout<<tot;if (ans) cout<<".5";
}
void solve3(int k,ll s)
{
if (k>cnt)
{
ll t=s*s*s;t/=(<<cnt);for (int i=;i<=m;i++) t*=s;tot+=t;
t=s*s*s;t%=(<<cnt);for (int i=;i<=m;i++) t*=s;
ans+=t;tot+=ans/(<<cnt);ans%=(<<cnt);
}
else solve3(k+,s),solve3(k+,s^b[k]);
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj3811.in","r",stdin);
freopen("bzoj3811.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read();
for (int i=;i<=n;i++)
{
a[i]=read();
for (int j=;j<;j++) if (a[i]&(1ll<<j)) flag[j]=;
}
if (m==) solve1();
if (m==) solve2();
if (m>=)
{
getbase(),solve3(,);
cout<<tot;if (ans) cout<<".5";
}
return ;
}