题目:
Given a binary tree, determine if it is a valid binary search tree (BST).
Assume a BST is defined as follows:
- The left subtree of a node contains only nodes with keys less than the node's key.
- The right subtree of a node contains only nodes with keys greater than the node's key.
- Both the left and right subtrees must also be binary search trees.
- A single node tree is a BST
An example:
2
/ \
1 4
/ \
3 5
The above binary tree is serialized as {2,1,4,#,#,3,5}
(in level order).
题解:
按照定义,二叉搜索树的中序遍历是升序序列
Solution 1 ()
class Solution {
public:
/**
* @param root: The root of binary tree.
* @return: True if the binary tree is BST, or false
*/
bool isValidBST(TreeNode *root) {
TreeNode *prev = nullptr;
return validate(root, prev);
} bool validate(TreeNode *node, TreeNode* &prev) {
if (node == nullptr) {
return true;
}
if (!validate(node->left,prev)) {
return false;
}
if (prev != nullptr && prev->val >= node->val) {
return false;
}
prev = node; return validate(node->right, prev);
}
};
分治法 from here
Solution 2 ()
class ResultType {
public:
bool isBST;
TreeNode *maxNode, *minNode;
ResultType(): isBST(true), maxNode(nullptr), minNode(nullptr) {}
};
class Solution {
public: bool isValidBST(TreeNode *root) {
ResultType result = helper(root);
return result.isBST;
} ResultType helper(TreeNode *root) {
ResultType result;
if (root == nullptr) {
return result;
} ResultType left = helper(root->left);
ResultType right = helper(root->right); if (!left.isBST || !right.isBST) {
result.isBST = false;
return result;
}
if (left.maxNode != nullptr && left.maxNode->val >= root->val) {
result.isBST = false;
return result;
}
if (right.minNode != nullptr && right.minNode->val <= root->val) {
result.isBST = false;
return result;
} result.isBST = true;
result.minNode = left.minNode == nullptr ? root : left.minNode;
result.maxNode = right.maxNode == nullptr ? root : right.maxNode; return result;
}
};