HDU 4612 Warm up —— (缩点 + 求树的直径)

时间:2023-03-10 00:41:44
HDU 4612 Warm up —— (缩点 + 求树的直径)

  题意:一个无向图,问建立一条新边以后桥的最小数量。

  分析:缩点以后,找出新图的树的直径,将这两点连接即可。

  但是题目有个note:两点之间可能有重边!而用普通的vector保存边的话,用v!=fa的话是没办法让重边访问的,因此,使用数组模拟邻接表的方法来储存边。

这样,只要访问了一条边以后,令E[i].vis=E[i^1].vis=1即可,这样可以防止无向图的边和重边搞混。原理就是按位异或,一个奇数^1变为比它小1的偶数,反之亦然:如5^1=4,4^1=5。

  具体见代码:

 #include <stdio.h>
#include <algorithm>
#include <string.h>
#include <stack>
#include <vector>
#include <set>
#include <queue>
//#pragma comment(linker, "/STACK:1024000000,1024000000")
using namespace std; const int N = +; int n,m,dfn[N],low[N];
int head[N];
int tot=;
int dfs_clock;
int bridge;
int belong[N];
int scc_cnt;
int maxd;
bool vis[N];
vector<int> G[N];
stack<int> S; struct edge
{
int v;
int vis;
int nxt;
}E[*+]; void addEdge(int u,int v)
{
E[tot].v=v;
E[tot].vis=;
E[tot].nxt=head[u];
head[u]=tot++; E[tot].v=u;
E[tot].vis=;
E[tot].nxt=head[v];
head[v]=tot++;
} void tarjan(int u)
{
dfn[u]=low[u]=++dfs_clock;
S.push(u);
for(int i=head[u];i!=-;i=E[i].nxt)
{
int v = E[i].v;
if(E[i].vis) continue;
E[i].vis=E[i^].vis=; if(!dfn[v])
{
tarjan(v);
low[u]=min(low[u],low[v]); if(low[v]>dfn[u]) bridge++;
}
else if(!belong[v])
{
low[u]=min(low[u],dfn[v]);
}
} if(dfn[u]==low[u])
{
scc_cnt++;
for(;;)
{
int x = S.top();S.pop();
belong[x] = scc_cnt;
if(x==u) break;
}
}
} void init()
{
memset(head,-,sizeof(head));
tot=;
memset(dfn,,sizeof(dfn));
dfs_clock=;
bridge=;
memset(belong,,sizeof(belong));
scc_cnt=;
maxd=;
for(int i=;i<=n;i++) G[i].clear();
memset(vis,,sizeof(vis));
} //找到树的直径
void findMaxDeep(int u,int deep)
{
vis[u]=; maxd=max(maxd,deep);
for(int i=;i<G[u].size();i++)
{
int v = G[u][i];
if(!vis[v])
{
findMaxDeep(v,deep+);
}
}
} //用bfs来找到一个叶子节点
int findRoot()
{
queue<int> Q;
Q.push();
vis[]=;
int last=;
while(!Q.empty())
{
int x = Q.front();Q.pop();
for(int i=;i<G[x].size();i++)
{
int v = G[x][i];
if(!vis[v])
{
Q.push(v);
vis[v]=;
last=v;
}
}
}
return last;
} void solve()
{
for(int i=;i<=n;i++) if(!dfn[i]) tarjan(i); //重新建图
for(int i=;i<=n;i++)
{
for(int j=head[i];j!=-;j=E[j].nxt)
{
int v = E[j].v;
int x = belong[i];
int y = belong[v];
if(x!=y)
{
G[x].push_back(y);
G[y].push_back(x);
}
}
} int root=findRoot();
memset(vis,,sizeof(vis)); findMaxDeep(root,); printf("%d\n",bridge-maxd);
} int main()
{
while(scanf("%d%d",&n,&m)==)
{
if(n== && m==) break;
init(); for(int i=;i<=m;i++)
{
int u,v;
scanf("%d%d",&u,&v);
addEdge(u,v);
} solve();
}
}

  但是奇怪的是,重新建图以后找叶子节点的时候,这里用G[x].size()==2不能够实现。讲道理,原理上是没错的,尽管后来发现如果缩点后只有一个点的话是个例外,但是即使排除了这个特殊情况仍然不行,,,这个问题也留着以后探讨吧。。