LOJ 6485 LJJ学多项式

时间:2023-03-10 00:39:49
LOJ 6485 LJJ学多项式

前言

蒟蒻代码惨遭卡常,根本跑不过

前置芝士——单位根反演

单位根有这样的性质:

\[\frac{1}{n}\sum_{i=0}^{n-1}\omega_{n}^{ki}=\left[n|k\right]
\]

所以可以得出单位根反演的式子

如果有\(f(x)=\sum_{i=0}a_ix^i\),就可以推出

\[\sum_{i=0}^na_i\left[d|i\right]=\frac{1}{d}\sum_{p=0}^{d-1}f(\omega_d^p)
\]

证明可以把上面的式子代入,然后交换和号

思路

这道题要求的东西是这样的

\[\sum_{i=0}^3a_i\sum_{j=0}^n\left(\begin{matrix}n\\j\end{matrix}\right)s^j\left[j\%4=i\right]
\]

写出\(\sum_{j=0}^n\left(\begin{matrix}n\\j\end{matrix}\right)s^j\)的生成函数,由二项式定理得到是\((sx+1)^n\)

不妨设i=0

则要求

\[\sum_{j=0}^n\left(\begin{matrix}n\\j\end{matrix}\right)s^j\left[4|j\right]
\]

直接套公式

原式等于

\[\frac{1}{4}\sum_{p=0}^3f(\omega_4^p)
\]

对于i等于1,2,3,相当于原式向右边“移动”了1,2,3个位置

乘以自变量的对应倍即可

代码

蒟蒻的代码不知道为什么跑的辣么慢,只有60pts

#include <cstdio>
#include <algorithm>
#include <cstring>
#define int long long
using namespace std;
int T,a[4],s,n,MOD=998244353,W[5]={1,911660635,998244352,86583718},inv=748683265;
int pow(int a,int b){
int ans=1;
while(b){
if(b&1)
ans=(ans*a)%MOD;
a=(a*a)%MOD;
b>>=1;
}
return ans;
}
signed main(){
scanf("%lld",&T);
while(T--){
scanf("%lld %lld %lld %lld %lld %lld",&n,&s,&a[0],&a[1],&a[2],&a[3]);
int ans=0;
for(int i=0;i<4;i++){
int mid=0;
for(int j=0;j<4;j++)
mid=(mid+pow((s*W[j]%MOD+1%MOD)%MOD,n)*pow(W[i*j%4],MOD-2)%MOD)%MOD;
ans=(ans+a[i]*mid%MOD*inv%MOD)%MOD;
}
printf("%lld\n",ans);
}
return 0;
}