Opencv学习笔记4:Opencv处理调整图片亮度和对比度

时间:2023-03-10 00:23:16
Opencv学习笔记4:Opencv处理调整图片亮度和对比度

一、理论基础

在数学中我们学过线性理论,在图像亮度和对比度调节中同样适用,看下面这个公式:

Opencv学习笔记4:Opencv处理调整图片亮度和对比度

在图像像素中其中:

  • 参数f(x)表示源图像像素。
  • 参数g(x) 表示输出图像像素。
  • 参数a(需要满足a>0)被称为增益(gain),常常被用来控制图像的对比度。
  • 参数b通常被称为偏置(bias),常常被用来控制图像的亮度。

二、获取图像像素

在opencv中图像数据是存放在Mat数据类型中,我们知道一个像素有rgb构成,所以Mat是个三维数组,一下就是简单的获取mat中图像像素。

//三个for循环,执行运算 new_image(i,j) =a*image(i,j) + b
for(int y = ; y < image.rows; y++ )
{
for(int x = ; x < image.cols; x++ )
{
for(int c = ; c < ; c++ )
{
new_image.at<Vec3b>(y,x)[c]= saturate_cast<uchar>( (g_nContrastValue*0.01)*(image.at<Vec3b>(y,x)[c] ) + g_nBrightValue );
}
}
}

上述代码中image.at<Vec3b>(y,x)[c] 其中,y是像素所在的行, x是像素所在的列, c是R、G、B(对应0、1、2)其中之一。

saturate_cast为了安全转换,运算结果可能超出像素取值范围(溢出),还可能是非整数(如果是浮点数的话),用saturate_cast对结果进行转换,以确保它为有效值。

效果图:

Opencv学习笔记4:Opencv处理调整图片亮度和对比度

三、实例

#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include "opencv2/imgproc/imgproc.hpp" using namespace std;
using namespace cv; static void ContrastAndBright(int, void *);
int g_nContrastValue; //对比度值
int g_nBrightValue; //亮度值
Mat g_srcImage, g_dstImage; int main()
{
// 读入用户提供的图像
g_srcImage = imread("0004.bmp"); g_dstImage = Mat::zeros(g_srcImage.size(), g_srcImage.type()); //设定对比度和亮度的初值
g_nContrastValue = ;
g_nBrightValue = ; //创建窗口
namedWindow("【效果图窗口】", ); //创建轨迹条
createTrackbar("对比度:", "【效果图窗口】", &g_nContrastValue, , ContrastAndBright);
createTrackbar("亮 度:", "【效果图窗口】", &g_nBrightValue, , ContrastAndBright); //调用回调函数
ContrastAndBright(g_nContrastValue, );
ContrastAndBright(g_nBrightValue, ); waitKey();
//输出一些帮助信息
return ;
} //-----------------------------【ContrastAndBright( )函数】------------------------------------
// 描述:改变图像对比度和亮度值的回调函数
//-----------------------------------------------------------------------------------------------
static void ContrastAndBright(int, void *)
{
// 三个for循环,执行运算 g_dstImage(i,j) = a*g_srcImage(i,j) + b
for (int y = ; y < g_srcImage.rows; y++)
{
for (int x = ; x < g_srcImage.cols; x++)
{
for (int c = ; c < ; c++)
{
g_dstImage.at<Vec3b>(y, x)[c] = saturate_cast<uchar>((g_nContrastValue*0.01)*(g_srcImage.at<Vec3b>(y, x)[c]) + g_nBrightValue);
}
}
}
// 显示图像
imshow("【原始图窗口】", g_srcImage);
imshow("【效果图窗口】", g_dstImage);
}

注意:

saturate_cast:

功能:防止数据溢出,因为无论是加是减,乘除,都会超出一个像素灰度值的范围(0~255)。所以,所以当运算完之后,结果为负,则转为0,结果超出255,则为255。

四、改进

这样已经完成了更改亮度和对比度的需求,但是用for循环执行效率有点低,图像处理起来也不是特别流畅,opencv给出了非常合适的函数。

函数原型
void Mat::convertTo( Mat& m, int rtype, double alpha=1, double beta=0 )const;
 
输入参数:
m  目标矩阵。如果m的大小与原矩阵不一样,或者数据类型与参数不匹配,那么在函数convertTo内部会先给m重新分配空间。
rtype 指定从原矩阵进行转换后的数据类型,即目标矩阵m的数据类型。当然,矩阵m的通道数应该与原矩阵一样的。如果rtype是负数,那么m矩阵的数据类型应该与原矩阵一样。
alpha 缩放因子。默认值是1。即把原矩阵中的每一个元素都乘以alpha。
beta 增量。默认值是0。即把原矩阵中的每一个元素都乘以alpha,再加上beta。
功能
把一个矩阵从一种数据类型转换到另一种数据类型,同时可以带上缩放因子和增量,公式如下:
m(x,y)=saturate_cast<rType>(alpha*(*this)(x,y)+beta);
由于有数据类型的转换,所以需要用saturate_cast<rType>来处理数据的溢出。
所以上述代码可以写为,通过简单拉动进度条可以看出这个速度上提升比较大
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include "opencv2/imgproc/imgproc.hpp" using namespace std;
using namespace cv; static void ContrastAndBright(int, void *);
int g_nContrastValue; //对比度值
int g_nBrightValue; //亮度值
Mat g_srcImage, g_dstImage; int main()
{
// 读入用户提供的图像
g_srcImage = imread("0004.bmp"); g_dstImage = Mat::zeros(g_srcImage.size(), g_srcImage.type()); //设定对比度和亮度的初值
g_nContrastValue = ;
g_nBrightValue = ; //创建窗口
namedWindow("【效果图窗口】", ); //创建轨迹条
createTrackbar("对比度:", "【效果图窗口】", &g_nContrastValue, , ContrastAndBright);
createTrackbar("亮 度:", "【效果图窗口】", &g_nBrightValue, , ContrastAndBright); //调用回调函数
ContrastAndBright(g_nContrastValue, );
ContrastAndBright(g_nBrightValue, ); waitKey();
//输出一些帮助信息
return ;
} //-----------------------------【ContrastAndBright( )函数】------------------------------------
// 描述:改变图像对比度和亮度值的回调函数
//-----------------------------------------------------------------------------------------------
static void ContrastAndBright(int, void *)
{
// 三个for循环,执行运算 g_dstImage(i,j) = a*g_srcImage(i,j) + b
//for (int y = 0; y < g_srcImage.rows; y++)
//{
// for (int x = 0; x < g_srcImage.cols; x++)
// {
// for (int c = 0; c < 3; c++)
// {
// g_dstImage.at<Vec3b>(y, x)[c] = saturate_cast<uchar>((g_nContrastValue*0.01)*(g_srcImage.at<Vec3b>(y, x)[c]) + g_nBrightValue);
// }
// }
//}
g_srcImage.convertTo(g_dstImage, -, g_nContrastValue*0.01, g_nBrightValue);
// 显示图像
imshow("【原始图窗口】", g_srcImage);
imshow("【效果图窗口】", g_dstImage);
}