【BZOJ1135】[POI2009]Lyz
Description
初始时滑冰俱乐部有1到n号的溜冰鞋各k双。已知x号脚的人可以穿x到x+d的溜冰鞋。 有m次操作,每次包含两个数ri,xi代表来了xi个ri号脚的人。xi为负,则代表走了这么多人。 对于每次操作,输出溜冰鞋是否足够。
Input
n m k d ( 1≤n≤200,000 , 1≤m≤500,000 , 1≤k≤10^9 , 0≤d≤n ) ri xi ( 1≤i≤m, 1≤ri≤n-d , |xi|≤10^9 )
Output
对于每个操作,输出一行,TAK表示够 NIE表示不够。
Sample Input
4 4 2 1
1 3
2 3
3 3
2 -1
1 3
2 3
3 3
2 -1
Sample Output
TAK
TAK
NIE
TAK
TAK
NIE
TAK
题解:如果出现不够用的情况,那么一定是存在连续的一些人,他们把能穿的鞋子都穿完了还是不够,即存在l<r,且$(r-l+d+1)*k \le sum[l..r] $。
移项,得$sum[l..r]-(r-l+1)*k \ge d*k $,有没有看出什么?我们将所有数的权值-k,那么就变成了整个区间的最大连续子段和>=d*k。用线段树维护即可。
#include <cstdio>
#include <cstring>
#include <iostream>
#define lson x<<1
#define rson x<<1|1
using namespace std;
typedef long long ll;
int n,m;
ll K,D;
const int maxn=200010;
struct node
{
ll s,lm,rm,sm;
node() {s=lm=rm=sm=0;}
node(ll a) {s=a,lm=rm=sm=max(a,0ll);}
node operator + (const node &b) const
{
node c;
c.s=s+b.s;
c.lm=max(lm,s+b.lm);
c.rm=max(b.rm,rm+b.s);
c.sm=max(rm+b.lm,max(sm,b.sm));
return c;
}
}s[maxn<<2];
inline int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-') f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+(gc^'0'),gc=getchar();
return ret*f;
}
void build(int l,int r,int x)
{
if(l==r)
{
s[x]=node(-K);
return ;
}
int mid=(l+r)>>1;
build(l,mid,lson),build(mid+1,r,rson);
s[x]=s[lson]+s[rson];
}
void updata(int l,int r,int x,int a,ll b)
{
if(l==r)
{
s[x]=node(s[x].s+b);
return ;
}
int mid=(l+r)>>1;
if(a<=mid) updata(l,mid,lson,a,b);
else updata(mid+1,r,rson,a,b);
s[x]=s[lson]+s[rson];
}
int main()
{
n=rd(),m=rd(),K=rd(),D=rd();
int i,a,b;
build(1,n,1);
for(i=1;i<=m;i++)
{
a=rd(),b=rd(),updata(1,n,1,a,b);
if(s[1].sm>K*D) printf("NIE\n");
else printf("TAK\n");
}
return 0;
}//4 4 2 1 1 3 2 3 3 3 2 -1