题意:就是让你求出4个塔的汉诺塔的最小移动步数,(1 <= n <= 12)
那么我们知道3个塔的汉诺塔问题的解为:d[n] = 2*d[n-1] + 1 ,可以解释为把n-1个圆盘移动到一个临时柱子上,然后将1个最大圆盘移动到目标的主子,最后再将n-1个圆盘移动到目标柱子。
为什么是n-1和1的组合呢,因为当你将n-i个圆盘移动到一个临时柱子上的时候,你会发现只靠两个柱子最多能移动1个圆盘。所以这个i=1
如果推到到4个柱子的汉诺塔,f[n] = min(f[n],2*f[n-i]+d[i]). (1 <= i < n),就是把n-i个圆盘移动到临时的一个柱子上,然后把剩下的 i 个圆盘在三个柱子中移动到目标柱子,最后把n-i移动会目标柱子
#include<iostream>
#include<string.h>
#include<cstdio>
using namespace std; int d[];
int f[];
int main()
{
d[] = ;
for(int i=;i<=;i++)d[i] = (d[i-]<<)+;
memset(f,0x3f,sizeof(f));
f[] = ;
for(int i=;i<=;i++)
{
for(int j=;j<i;j++)
{
f[i] = min(f[i],(f[j]<<)+d[i-j]);
}
}
for(int i=;i<=;i++)
{
printf("%d\n",f[i]);
}
}