pandas的拼接操作
pandas的拼接分为两种:
- 级联:pd.concat, pd.append
- 合并:pd.merge, pd.join
import pandas as pd
import numpy as np
from pandas import DataFrame,Series
一. 使用pd.concat()级联
pandas使用pd.concat函数,与np.concatenate函数类似,只是多了一些参数:
objs
axis=0
keys
join='outer' / 'inner':表示的是级联的方式,outer会将所有的项进行级联(忽略匹配和不匹配),而inner只会将匹配的项级联到一起,不匹配的不级联
ignore_index=False
1)匹配级联
行列索引均一致
df1 = DataFrame(data=np.random.randint(0,100,size=(3,4)))
df1
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
0 | 1 | 2 | 3 | |
---|---|---|---|---|
0 | 61 | 89 | 68 | 51 |
1 | 46 | 79 | 1 | 55 |
2 | 52 | 4 | 72 | 18 |
df2 = DataFrame(data=np.random.randint(0,100,size=(3,4)))
df2
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
0 | 1 | 2 | 3 | |
---|---|---|---|---|
0 | 15 | 62 | 20 | 78 |
1 | 60 | 79 | 70 | 58 |
2 | 71 | 87 | 20 | 95 |
pd.concat((df1,df2),axis=0) # axis=0表示Y轴级联
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
0 | 1 | 2 | 3 | |
---|---|---|---|---|
0 | 61 | 89 | 68 | 51 |
1 | 46 | 79 | 1 | 55 |
2 | 52 | 4 | 72 | 18 |
0 | 15 | 62 | 20 | 78 |
1 | 60 | 79 | 70 | 58 |
2 | 71 | 87 | 20 | 95 |
2) 不匹配级联
不匹配指的是级联的维度的索引不一致。例如纵向级联时列索引不一致,横向级联时行索引不一致
有2种连接方式:
外连接:补NaN(默认模式)
内连接:只连接匹配的项
df1 = DataFrame(data=np.random.randint(0,100,size=(3,4)))
df2 = DataFrame(data=np.random.randint(0,100,size=(3,3)))
pd.concat((df1,df2),axis=0)
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
0 | 1 | 2 | 3 | |
---|---|---|---|---|
0 | 55 | 61 | 54 | 56.0 |
1 | 10 | 14 | 6 | 62.0 |
2 | 39 | 27 | 99 | 81.0 |
0 | 31 | 49 | 80 | NaN |
1 | 73 | 42 | 44 | NaN |
2 | 67 | 68 | 97 | NaN |
pd.concat((df1,df2),axis=0,join='inner') # inner内连接,只级联匹配的项
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
0 | 1 | 2 | |
---|---|---|---|
0 | 55 | 61 | 54 |
1 | 10 | 14 | 6 |
2 | 39 | 27 | 99 |
0 | 31 | 49 | 80 |
1 | 73 | 42 | 44 |
2 | 67 | 68 | 97 |
二. 使用pd.merge()合并
merge与concat的区别在于,merge需要依据某一共同的列来进行合并
使用pd.merge()合并时,会自动根据两者相同column名称的那一列,作为key来进行合并。
注意每一列元素的顺序不要求一致
参数:
how:outer取并集(外连接) inner取交集(内连接)
on:当有多列相同的时候,可以使用on来指定使用那一列进行合并,on的值为一个列表
1) 一对一合并
df1 = DataFrame({'employee':['Bob','Jake','Lisa'],
'group':['Accounting','Engineering','Engineering'],
})
df1
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
employee | group | |
---|---|---|
0 | Bob | Accounting |
1 | Jake | Engineering |
2 | Lisa | Engineering |
df2 = DataFrame({'employee':['Lisa','Bob','Jake'],
'hire_date':[2004,2008,2012],
})
df2
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
employee | hire_date | |
---|---|---|
0 | Lisa | 2004 |
1 | Bob | 2008 |
2 | Jake | 2012 |
pd.merge(df1, df2) # 按照employee进行了合并
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
employee | group | hire_date | |
---|---|---|---|
0 | Bob | Accounting | 2008 |
1 | Jake | Engineering | 2012 |
2 | Lisa | Engineering | 2004 |
2) 多对一合并
df3 = DataFrame({
'employee':['Lisa','Jake'],
'group':['Accounting','Engineering'],
'hire_date':[2004,2016]})
df3
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
employee | group | hire_date | |
---|---|---|---|
0 | Lisa | Accounting | 2004 |
1 | Jake | Engineering | 2016 |
df4 = DataFrame({'group':['Accounting','Engineering','Engineering'],
'supervisor':['Carly','Guido','Steve']
})
df4
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
group | supervisor | |
---|---|---|
0 | Accounting | Carly |
1 | Engineering | Guido |
2 | Engineering | Steve |
pd.merge(df3, df4)
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
employee | group | hire_date | supervisor | |
---|---|---|---|---|
0 | Lisa | Accounting | 2004 | Carly |
1 | Jake | Engineering | 2016 | Guido |
2 | Jake | Engineering | 2016 | Steve |
3) 多对多合并
df1 = DataFrame({'employee':['Bob','Jake','Lisa'],
'group':['Accounting','Engineering','Engineering']})
df1
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
employee | group | |
---|---|---|
0 | Bob | Accounting |
1 | Jake | Engineering |
2 | Lisa | Engineering |
df2 = DataFrame({'group':['Engineering','Engineering','HR'],
'supervisor':['Carly','Guido','Steve']
})
df2
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
group | supervisor | |
---|---|---|
0 | Engineering | Carly |
1 | Engineering | Guido |
2 | HR | Steve |
pd.merge(df1,df2,how='right') # right表示右连接
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
employee | group | supervisor | |
---|---|---|---|
0 | Jake | Engineering | Carly |
1 | Lisa | Engineering | Carly |
2 | Jake | Engineering | Guido |
3 | Lisa | Engineering | Guido |
4 | NaN | HR | Steve |
4) key的规范化
- 当列冲突时,即有多个列名称相同时,需要使用on=来指定哪一个列作为key,配合suffixes指定冲突列名
df1 = DataFrame({'employee':['Jack',"Summer","Steve"],
'group':['Accounting','Finance','Marketing']})
df1
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
employee | group | |
---|---|---|
0 | Jack | Accounting |
1 | Summer | Finance |
2 | Steve | Marketing |
df2 = DataFrame({'employee':['Jack','Bob',"Jake"],
'hire_date':[2003,2009,2012],
'group':['Accounting','sell','ceo']})
df2
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
employee | group | hire_date | |
---|---|---|---|
0 | Jack | Accounting | 2003 |
1 | Bob | sell | 2009 |
2 | Jake | ceo | 2012 |
pd.merge(df1,df2,on='employee') # 默认按照employee和group进行合并,可以指定列名
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
employee | group_x | group_y | hire_date | |
---|---|---|---|---|
0 | Jack | Accounting | Accounting | 2003 |
- 当两张表没有可进行连接的列时,可使用left_on和right_on手动指定merge中左右两边的哪一列列作为连接的列
df1 = DataFrame({'employee':['Bobs','Linda','Bill'],
'group':['Accounting','Product','Marketing'],
'hire_date':[1998,2017,2018]})
df1
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
employee | group | hire_date | |
---|---|---|---|
0 | Bobs | Accounting | 1998 |
1 | Linda | Product | 2017 |
2 | Bill | Marketing | 2018 |
df2 = DataFrame({'name':['Lisa','Bobs','Bill'],
'hire_dates':[1998,2016,2007]})
df2
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
hire_dates | name | |
---|---|---|
0 | 1998 | Lisa |
1 | 2016 | Bobs |
2 | 2007 | Bill |
pd.merge(df1,df2,left_on='employee',right_on='name',how='outer')
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
employee | group | hire_date | hire_dates | name | |
---|---|---|---|---|---|
0 | Bobs | Accounting | 1998.0 | 2016.0 | Bobs |
1 | Linda | Product | 2017.0 | NaN | NaN |
2 | Bill | Marketing | 2018.0 | 2007.0 | Bill |
3 | NaN | NaN | NaN | 1998.0 | Lisa |
5) 内合并与外合并:out取并集 inner取交集
- 内合并:只保留两者都有的key(默认模式)
df6 = DataFrame({'name':['Peter','Paul','Mary'],
'food':['fish','beans','bread']}
)
df6
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
food | name | |
---|---|---|
0 | fish | Peter |
1 | beans | Paul |
2 | bread | Mary |
df7 = DataFrame({'name':['Mary','Joseph'],
'drink':['wine','beer']})
df7
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
drink | name | |
---|---|---|
0 | wine | Mary |
1 | beer | Joseph |
pd.merge(df6, df7)
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
food | name | drink | |
---|---|---|---|
0 | bread | Mary | wine |
- 外合并 how='outer':补NaN
pd.merge(df6, df7, how='outer')
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
food | name | drink | |
---|---|---|---|
0 | fish | Peter | NaN |
1 | beans | Paul | NaN |
2 | bread | Mary | wine |
3 | NaN | Joseph | beer |