Problem:Given an array S of n integers, are there elements a, b, c, and d in S such that a + b + c + d = target? Find all unique quadruplets in the array which gives the sum of target.
Note:
- Elements in a quadruplet (a,b,c,d) must be in non-descending order. (ie, a ≤ b ≤ c ≤ d)
- The solution set must not contain duplicate quadruplets.
For example, given array S = {1 0 -1 0 -2 2}, and target = 0.
A solution set is:
(-1, 0, 0, 1)
(-2, -1, 1, 2)
(-2, 0, 0, 2) 这题其实就是之前的变种,我是这样想的,首先还是排序好,然后根据固定四个的头和尾,即i为头,从0开始到倒数第四个,j为尾巴从尾开始到i+2. 再来一个left=i+1 right=j-1 如果i++之后和前面一个相等,那就直接continue,因为已经在之前一个i算过了,同理,j--之后如果和之前的j相等的话也是不用计算的直接continue 这样的话复杂度就是n3方
class Solution {
public:
vector<vector<int> > fourSum(vector<int> &num, int target)
{
vector<vector<int> > sum;
sum.clear();
if(num.size() < )
return sum;
sort(num.begin(), num.end()); for (int i = ; i < num.size() - ; ++i)
{
if (i - >= && num[i - ] == num[i])
continue;
for (int j = num.size() - ; j > i + ; --j)
{
if(j + < num.size() && num[j + ] == num[j])
continue;
int left = i + , right = j - ;
while(left < right)
{
if (num[i] + num[left] + num[right] + num[j] == target)
{
if(sum.size()== || sum.size()> && !(sum[sum.size() - ][]==num[i] && sum[sum.size() - ][]==num[left] && sum[sum.size() - ][]==num[right]))
{
vector<int> tep;
tep.push_back(num[i]);
tep.push_back(num[left]);
tep.push_back(num[right]);
tep.push_back(num[j]);
sum.push_back(tep);
}
left++;
right--;
}
else if (num[i] + num[left] + num[right] + num[j] < target)
left++;
else if (num[i] + num[left] + num[right] + num[j] > target)
right--;
}
}
}
return sum;
}
};