2016级算法第二次上机-F.ModricWang's Number Theory II

时间:2023-03-09 23:09:52
2016级算法第二次上机-F.ModricWang's Number Theory II

891 ModricWang's Number Theory II

思路

使得序列的最大公约数不为1,就是大于等于2,就是找到一个大于等于2的数,它能够整除序列中的所有数。

考虑使得一个数d整除数组中所有数的代价:

如果一个数不能被b整除,那么可以花费x的代价删掉它,或者通过多次加1使得它可以被d整除,代价应该为 \((d - a[i]\%d) * y\) , \((a[i] \% d == 0s时特判,应该为0)\)

令 \(l = x / y\)

如果\(d - a[i] \% d <= l\) \((a[i]\%d != 0)\), 这个数产生的代价是 \((d - a[i] \% d) * y\) , 否则是\(x\)。

所有代价求和就是总代价,最小的总代价就是答案。

但是这样枚举了d和a[i], 复杂度是\(O(n^2)\) 的。

考虑将a[i]换一种方式存储:b[i]表示值为i的数出现的次数。

这样d可以将b分成如下若干段:

\([0, d - 1], [d, d * 2 - 1], [d * 2, d * 3 - 1], ... ,[d * i, d * (i + 1) - 1]\)

对于每一段而言,

\([d * (i + 1) - l, d * (i + 1) - 1]\) 内的数应该通过多次加1变成\(d * (i + 1)\) ,

代价应为 \((该区间内数的个数 * d * (i + 1) - 该区间内的数之和) * y\)

\([d * i + 1 , d * (i + 1) - l - 1]\) 内的数应该直接删除,

代价应为 \(该区间内的个数 * x\)

通过构造相应的前缀和数组,上述操作均可以在\(O(1)\) 的时间复杂度内完成

具体操作时应该注意边界

因为合数会被质数整除,因此d可以只枚举质数。

计算时间复杂度需要一些数论知识。首先素数密度(也就是 \(\frac{小于n的素数}{n}\) )可以参见oeis A006880,一个近似解析式为 \(\frac{1}{ln(n)}\),那么\(小于n的素数的总个数\)可以近似为 \(\frac{n}{ln(n)}\)

设小于等于n的素数为\(prime[i]\),素数总数为\(P\),取近似\(P=\frac{n}{ln(n)}\)

求结果部分的复杂度可以写为 \(\sum_{1}^{P} \frac{n}{prime[i]}\)

参见wikipedia,素数的倒数和又可以近似为 \(\sum_{1}^{p} \frac{1}{prime[i]}=ln(ln(n))\)

因此 \(\sum_{1}^{P} \frac{n}{prime[i]} = O(n* ln(ln(n)))\)

这里得到了计算结果部分的复杂度,还需要加上求素数这个过程的时间复杂度。如果使用朴素筛法,求复杂度的过程正好的上文所述的完全一致,其复杂度为\(O(n*ln(ln(n)))\)。如果使用欧拉筛求素数,复杂度为\(O(n)\)。

因此\(O(运行时间)=O(求素数)+O(计算结果)=O(n*ln(ln(n)))\)

代码

#include<iostream>
#include<cstring> using namespace std; const long long Max_Ai = 1000000*2;
long long n, x, y, l;
long long nums[Max_Ai + 10];
long long s[Max_Ai + 10], sum[Max_Ai + 10]; bool valid[Max_Ai + 10];
long long prime[Max_Ai + 10];
long long tot; //线性筛求素数
void init_prime() {
memset(valid, true, sizeof(valid)); for (int i = 2; i <= Max_Ai; i++) {
if (valid[i]) prime[++tot] = i; for (int j = 1; j <= tot && i*prime[j] <= Max_Ai; j++) {
valid[i*prime[j]] = false;
if (i%prime[j]==0) break;
}
}
} int main() {
#ifdef ONLINE_JUDGE
ios_base::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
#endif init_prime(); cin >> n >> x >> y;
l = x/y;
for (long long i = 1; i <= n; i++) {
long long p;
cin >> p;
nums[p]++; //这是一种比较特别的数字记录方法,原理类似于基数排序radix sort
} for (long long i = 1; i <= Max_Ai; i++) {
s[i] = s[i - 1] + nums[i]; //数量和
sum[i] = sum[i - 1] + nums[i]*i; //前缀和
} auto min_cost = (long long) 1e18;
for (long long i = 1; i <= tot; i++) {
long long k = prime[i];
long long now_cost = 0; for (long long j = 0; j <= Max_Ai; j += k) {
long long mid = max(j + k - l - 1, j);
long long bound = min(j + k - 1, Max_Ai); if (bound > mid) {
now_cost += ((s[bound] - s[mid])*(j + k) - (sum[bound] - sum[mid]))*y;
now_cost += (s[mid] - s[j])*x;
} else {
now_cost += (s[bound] - s[j])*x;
}
} min_cost = min(min_cost, now_cost);
} cout << min_cost << "\n"; return 0;
}