POJ 2699 The Maximum Number of Strong Kings (最大流+枚举)

时间:2023-03-09 23:06:22
POJ 2699 The Maximum Number of Strong Kings (最大流+枚举)

http://poj.org/problem?id=2699

题意:

一场联赛可以表示成一个完全图,点表示参赛选手,任意两点u, v之间有且仅有一条有向边(u, v)或( v, u),表示u打败v或v打败u。一个选手的得分等于被他打败的选手总数。一个选手被称为“strong king”当且仅当他打败了所有比他分高的选手。分数最高的选手也是strong king。现在给出某场联赛所有选手的得分序列,由低到高,问合理安排每场比赛的结果后最多能有几个strong king。已知选手总数不超过10个。

思路:

选手总数很少,我们可以考虑枚举。

枚举当前strong king的个数为num个,那么可能存在分数最高的num个人是strong king,其余情况也可能存在,但这种情况是最可能的,只要满足这个就可以了。

建立源点和汇点,源点和每场比赛相连(比赛共有n*(n-1)/2场),容量为1,汇点和选手相连,容量为选手分数。

那么比赛和选手怎么连接呢?
如果选手i是strong king,那么凡是分数比他高的人,他都必须要赢,此时把这场比赛和i相连。

如果i和j都不是strong king,那么这场比赛无所谓谁输谁赢,将这场比赛和i和j都连起来就可以。

最后跑最大流,如果等于n*(n-1)/2,就是可以的。

 #include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<sstream>
#include<vector>
#include<stack>
#include<queue>
#include<cmath>
#include<map>
using namespace std;
typedef long long LL;
typedef pair<int,int> pll;
const int INF=0x3f3f3f3f;
const int maxn=+; int n;
int score[maxn];
int com[maxn][maxn]; struct Edge
{
int from,to,cap,flow;
Edge(int u,int v,int w,int f):from(u),to(v),cap(w),flow(f){}
}; struct Dinic
{
int n,m,s,t;
vector<Edge> edges;
vector<int> G[maxn];
bool vis[maxn];
int cur[maxn];
int d[maxn]; void init(int n)
{
this->n=n;
for(int i=;i<n;++i) G[i].clear();
edges.clear();
} void AddEdge(int from,int to,int cap)
{
edges.push_back( Edge(from,to,cap,) );
edges.push_back( Edge(to,from,,) );
m=edges.size();
G[from].push_back(m-);
G[to].push_back(m-);
} bool BFS()
{
queue<int> Q;
memset(vis,,sizeof(vis));
vis[s]=true;
d[s]=;
Q.push(s);
while(!Q.empty())
{
int x=Q.front(); Q.pop();
for(int i=;i<G[x].size();++i)
{
Edge& e=edges[G[x][i]];
if(!vis[e.to] && e.cap>e.flow)
{
vis[e.to]=true;
d[e.to]=d[x]+;
Q.push(e.to);
}
}
}
return vis[t];
} int DFS(int x,int a)
{
if(x==t || a==) return a;
int flow=, f;
for(int &i=cur[x];i<G[x].size();++i)
{
Edge &e=edges[G[x][i]];
if(d[e.to]==d[x]+ && (f=DFS(e.to,min(a,e.cap-e.flow) ) )>)
{
e.flow +=f;
edges[G[x][i]^].flow -=f;
flow +=f;
a -=f;
if(a==) break;
}
}
return flow;
} int Maxflow(int s,int t)
{
this->s=s; this->t=t;
int flow=;
while(BFS())
{
memset(cur,,sizeof(cur));
flow +=DFS(s,INF);
}
return flow;
}
}DC; int solve(int num,int cnt)
{
int tot=n*(n-)/;
int src=,dst=n+tot+;
DC.init(dst+); for(int i=;i<=n;i++)
DC.AddEdge(i,dst,score[i]);
for(int j=n+;j<=cnt;j++)
DC.AddEdge(src,j,); for(int i=;i<=n;i++)
for(int j=i+;j<=n;j++)
{
if(score[i]>score[j] && j>n-num) DC.AddEdge(com[i][j],j,);
else if(score[i]<score[j] && i>n-num) DC.AddEdge(com[i][j],i,);
else
{
DC.AddEdge(com[i][j],i,);
DC.AddEdge(com[i][j],j,);
}
}
return DC.Maxflow(src,dst)==tot;
} int main()
{
//freopen("D:\\input.txt","r",stdin);
int T;
scanf("%d",&T);
getchar();
while(T--)
{
n=;
string str;
getline(cin,str);
stringstream ss(str);
int x;
while(ss>>x) score[++n]=x; int num=n;
for(int i=;i<=n;i++)
for(int j=i+;j<=n;j++)
com[i][j]=com[j][i]=++num; for(int i=n;i>=;i--)
{
if(solve(i,num)) {printf("%d\n",i);break;}
}
}
return ;
}