最小生成树之Prim算法--蓝白点思想

时间:2023-03-09 22:24:44
最小生成树之Prim算法--蓝白点思想
Prim算法:    
以前一直不是很明白,Prim算法,今天就来终结一下。
Prim算法采用与Dijkstra、Bellman-Ford算法一样的“蓝白点”思想:白点代表已经进入最小生成树的点,蓝点代表未进入最小生成树的点。
算法描述:
以1为起点生成最小生成树,min[v]表示蓝点v与白点相连的最小边权。
MST表示最小生成树的权值之和。
a)初始化:min[v]= ∞(v≠1); min[1]=0;MST=0;
b)for (i = 1; i<= n; i++)
1.寻找min[u]最小的蓝点u。
2.将u标记为白点
3.MST+=min[u]
4.for 与白点u相连的所有蓝点v 
                 if (w[u][v]<min[v])
                      min[v]=w[u][v];
c)算法结束: MST即为最小生成树的权值之和
算法分析&思想讲解:
    Prim算法每次循环都将一个蓝点u变为白点,并且此蓝点u与白点相连的最小边权min[u]还是当前所有蓝点中最小的。这样相当于向生成树中添加了n-1次最小的边,最后得到的一定是最小生成树。

例题:(cojs)602. 新的开始

★★   输入文件:newstart.in   输出文件:newstart.out   简单对比
时间限制:1 s   内存限制:128 MB

【题目描述】

发展采矿业当然首先得有矿井,  小  FF  花了上次探险获得的千分之一的财富请人在岛

上挖了 n 口矿井,  但他似乎忘记考虑的矿井供电问题……

为了保证电力的供应,  小 FF 想到了两种办法:

1、  在这一口矿井上建立一个发电站,  费用为  v(发电站的输出功率可以供给任

意多个矿井)。

2、  将这口矿井与另外的已经有电力供应的矿井之间建立电网,  费用为 p。

小 FF 希望身为”NewBe_One"  计划首席工程师的你帮他想出一个保证所有矿井电力供

应的最小花费。

【输入格式】

第一行一个整数 n,  表示矿井总数。

第 2~n+1 行,每行一个整数,  第 i 个数 v[i]表示在第 i 口矿井上建立发电站的费用。

接下来为一个 n*n 的矩阵 P,  其中 p[ i , j ]表示在第 i 口矿井和第 j 口矿井之间建立

电网的费用(数据保证有 p[ i, j ] = p[ j, i ],  且  p[ i, i ]=0)。

【输出格式】

仅一个整数,  表示让所有矿井获得充足电能的最小花费。

【输入样例】

4

5

4

4

3

0 2 2 2

2 0 3 3

2 3 0 4

2 3 4 0

【输出样例】

9

输出样例说明:

小 FF 可以选择在4号矿井建立发电站然后把所有矿井都与其建立电网,总花费是

3+2+2+2 = 9。

【数据范围】

对于30%的数据:      1<=n<=50;

对于100%的数据:    1<=n<=300;      0<=v[i], p[i,j] <=10^5.

/*先加点,再跑最小生成树*/
#include<iostream>
using namespace std;
#include<cstdio>
#include<cstring>
#define INF (1<<31)-1
#define N 621
int n;
struct Edge{
int v,w,last;
};
Edge edge[N*N];
int t=;
int head[N],miu[N];
bool flag[N];
long long int mst=;
void input()
{
scanf("%d",&n);
int a;
for(int i=;i<=n;++i)
{
scanf("%d",&a);
++t;
edge[t].v=i;
edge[t].w=a;
edge[t].last=head[n+];
head[n+]=t;
++t;
edge[t].v=n+;
edge[t].w=a;
edge[t].last=head[i];
head[i]=t;
}
for(int i=;i<=n;++i)
for(int j=;j<=n;++j)
{
scanf("%d",&a);
++t;
edge[t].v=j;
edge[t].w=a;
edge[t].last=head[i];
head[i]=t;
}
n+=;
}
void Prim()
{
mst=;
memset(miu,,sizeof(miu));
miu[n]=;/*从第n个点开始建树*/
memset(flag,false,sizeof(flag));
int p,maxx=INF;
for(int i=;i<=n;++i)
{
maxx=INF;
for(int j=;j<=n;++j)
{/*!flag[j],找出miu最小的蓝点p*/
if(!flag[j]&&miu[j]<maxx)
{
maxx=miu[j];
p=j;
}
}
flag[p]=true;/*标记*/
mst+=miu[p];/*把p加入树内*/
for(int l=head[p];l;l=edge[l].last)
{
int vi=edge[l].v;
if(!flag[vi]&&edge[l].w<miu[vi])
miu[vi]=edge[l].w;/*miu储存着蓝点vi到白点的最小距离*/
}
}
}
int main()
{
freopen("newstart.in","r",stdin);
freopen("newstart.out","w",stdout);
input();
Prim();
cout<<mst<<endl;
fclose(stdin);
fclose(stdout);
return ;
}

Prim算法