A Hadoop job may consist of many map tasks and reduce tasks. Therefore, debugging a
Hadoop job is often a complicated process. It is a good practice to first test a Hadoop job
using unit tests by running it with a subset of the data.
However, sometimes it is necessary to debug a Hadoop job in a distributed mode. To support
such cases, Hadoop provides a mechanism called debug scripts. This recipe explains how to
use debug scripts.
A debug script is a shell script, and Hadoop executes the script whenever a task encounters
an error. The script will have access to the $script, $stdout, $stderr, $syslog, and
$jobconfproperties, as environment variables populated by Hadoop. You can find a
sample script from resources/chapter3/debugscript. We can use the debug scripts
to copy all the logfiles to a single location, e-mail them to a single e-mail account, or perform
some analysis.
LOG_FILE=HADOOP_HOME/error.log
echo "Run the script" >> $LOG_FILE
echo $script >> $LOG_FILE
echo $stdout>> $LOG_FILE
echo $stderr>> $LOG_FILE
echo $syslog >> $LOG_FILE
echo $jobconf>> $LOG_FILE
when you execute this, you should pay attention to the execute path, or else it will not found debug script.
package chapter3; import java.net.URI; import org.apache.hadoop.filecache.DistributedCache;
import org.apache.hadoop.fs.FileStatus;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class WordcountWithDebugScript {
private static final String scriptFileLocation = "resources/chapter3/debugscript";
private static final String HDFS_ROOT = "/debug"; public static void setupFailedTaskScript(JobConf conf) throws Exception { // create a directory on HDFS where we'll upload the fail scripts
FileSystem fs = FileSystem.get(conf);
// Path debugDir = new Path("/debug");
Path debugDir = new Path(HDFS_ROOT); // who knows what's already in this directory; let's just clear it.
if (fs.exists(debugDir)) {
fs.delete(debugDir, true);
} // ...and then make sure it exists again
fs.mkdirs(debugDir); // upload the local scripts into HDFS
fs.copyFromLocalFile(new Path(scriptFileLocation), new Path(HDFS_ROOT
+ "/fail-script")); FileStatus[] list = fs.listStatus(new Path(HDFS_ROOT));
if (list == null || list.length == 0) {
System.out.println("No File found");
} else {
for (FileStatus f : list) {
System.out.println("File found " + f.getPath());
}
} conf.setMapDebugScript("./fail-script");
conf.setReduceDebugScript("./fail-script");
// this create a simlink from the job directory to cache directory of
// the mapper node
DistributedCache.createSymlink(conf); URI fsUri = fs.getUri(); String mapUriStr = fsUri.toString() + HDFS_ROOT
+ "/fail-script#fail-script";
System.out.println("added " + mapUriStr + "to distributed cache 1");
URI mapUri = new URI(mapUriStr);
// Following copy the map uri to the cache directory of the job node
DistributedCache.addCacheFile(mapUri, conf);
} public static void main(String[] args) throws Exception {
JobConf conf = new JobConf();
setupFailedTaskScript(conf);
Job job = new Job(conf, "word count"); job.setJarByClass(FaultyWordCount.class);
job.setMapperClass(FaultyWordCount.TokenizerMapper.class);
job.setReducerClass(FaultyWordCount.IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileSystem.get(conf).delete(new Path(args[1]), true);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
job.waitForCompletion(true);
} }
digest from mapreduce cookbook