LightOJ 1038 - Race to 1 Again(期望+DP)

时间:2023-03-09 21:38:30
LightOJ 1038 - Race to 1 Again(期望+DP)

题目链接:http://lightoj.com/volume_showproblem.php?problem=1038

题意是:给你一个N (1 ≤ N ≤ 105) 每次N都随机选一个因子d,然后让N=N/d, 求N变成1的次数的期望;

当 N = 2 时 2有两个因子:1,2

E[2] = E[1]/2 + E[2]/2 + 1;因此可以求出E[2];

当N = 8 时 8有4个因子1 2 4 8;

E[8] = E[1]/4 + E[2]/4 + E[4]/4 + E[8]/4+ 1;因此可以求出E[8];

......

我们用 E[i] 表示 i 变成 1 的次数期望;那么E[i] = E[a[1]]/cnt + E[a[2]]/cnt + ... + E[a[cnt]]/cnt + 1;(加1是因为本次除了一次);

其中cnt为 i 的因子个数,a数组为 i 的因子集合,如果按从小到大的顺序排列 则 a[1] = 1, a[cnt] = i;

所以上式中的a[cnt]替换为i;整理可得 E[i] = (E[a[1]]+E[a[2]]+ ... +E[a[cnt-1]]+cnt)/(cnt-1);

#include <cstring>
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cmath>
#include <stack>
#include <vector>
#include <queue>
using namespace std;
#define N 100005
#define met(a, b) memset(a, b, sizeof(a))
#define MOD 110119 typedef long long LL; double dp[N]; void Init()
{
dp[] = ;
for(int i=; i<N; i++)
{
double sum = ;
int cnt = ;
for(int j=; j*j<=i; j++)
{
if( i%j == )
{
cnt++;
sum += dp[j];
if(j*j != i)
{
cnt ++;
sum += dp[i/j];///j是i的因子,i/j也是i的因子;
}
}
}
sum += cnt;
dp[i] = sum/(cnt-);
}
} int main()
{
Init();
int T, t = , n;
scanf("%d", &T);
while(T--)
{
scanf("%d", &n);
printf("Case %d: %.6f\n", t++, dp[n]);
}
return ;
}