目录
决策树原理
决策树代码(Spark Python)
决策树原理 |
详见博文:http://www.cnblogs.com/itmorn/p/7918797.html
决策树代码(Spark Python) |
代码里数据:https://pan.baidu.com/s/1jHWKG4I 密码:acq1
# -*-coding=utf-8 -*-
from pyspark import SparkConf, SparkContext
sc = SparkContext('local') from pyspark.mllib.tree import DecisionTree, DecisionTreeModel
from pyspark.mllib.util import MLUtils # Load and parse the data file into an RDD of LabeledPoint.
data = MLUtils.loadLibSVMFile(sc, 'data/mllib/sample_libsvm_data.txt')
'''
每一行使用以下格式表示一个标记的稀疏特征向量
label index1:value1 index2:value2 ... tempFile.write(b"+1 1:1.0 3:2.0 5:3.0\\n-1\\n-1 2:4.0 4:5.0 6:6.0")
>>> tempFile.flush()
>>> examples = MLUtils.loadLibSVMFile(sc, tempFile.name).collect()
>>> tempFile.close()
>>> examples[0]
LabeledPoint(1.0, (6,[0,2,4],[1.0,2.0,3.0]))
>>> examples[1]
LabeledPoint(-1.0, (6,[],[]))
>>> examples[2]
LabeledPoint(-1.0, (6,[1,3,5],[4.0,5.0,6.0]))
'''
# Split the data into training and test sets (30% held out for testing) 分割数据集,留30%作为测试集
(trainingData, testData) = data.randomSplit([0.7, 0.3]) # Train a DecisionTree model. 训练决策树模型
# Empty categoricalFeaturesInfo indicates all features are continuous. 空的categoricalFeaturesInfo意味着所有的特征都是连续的
model = DecisionTree.trainClassifier(trainingData, numClasses=2, categoricalFeaturesInfo={},
impurity='gini', maxDepth=5, maxBins=32) # Evaluate model on test instances and compute test error
predictions = model.predict(testData.map(lambda x: x.features))
labelsAndPredictions = testData.map(lambda lp: lp.label).zip(predictions)
testErr = labelsAndPredictions.filter(
lambda lp: lp[0] != lp[1]).count() / float(testData.count())
print('Test Error = ' + str(testErr)) #Test Error = 0.0294117647059
print('Learned classification tree model:')
print(model.toDebugString())
'''
DecisionTreeModel classifier of depth 2 with 5 nodes
If (feature 406 <= 72.0)
If (feature 100 <= 165.0)
Predict: 0.0
Else (feature 100 > 165.0)
Predict: 1.0
Else (feature 406 > 72.0)
Predict: 1.0
'''
# Save and load model 保存和加载模型
model.save(sc, "target/tmp/myDecisionTreeClassificationModel")
sameModel = DecisionTreeModel.load(sc, "target/tmp/myDecisionTreeClassificationModel")
print sameModel.predict(data.collect()[0].features) #0.0