Accept: 164 Submit: 607
Time Limit: 3000 mSec
Problem Description
Take any directed graph D with n vertices and m edges. You can make the Lying graph E of B in the following way. E will have m vertices, one for each edge of D. For example, if D has an edge uv, then E will have a vertex called uv. Now, whenever D has edges uv and vw, E will have an edge from vertex uv to vertex vw. There are no other edges in E. You will be given a graph E and will have to determine whether it is possible for E to be the Lying graph of some directed graph D.
Input
The first line of input gives the number of cases, N (N < 220). N test cases follow. Each one starts with two lines containing m (0 ≤ m ≤ 300) and k. The next k lines will each contain a pair of vertices, x and y, meaning that there is an edge from x to y in E. The vertices are numbered from 0 to m−1
Output
Sample Input
Sample Output
Case #1: Yes
Case #2: Yes
Case #3: No
Case #4: Yes
题解:这种结论题真的是做不来。首先第一感觉是这怎么会不存在呢,然后样例三强势打脸,但是感觉上不成立的情况应该很少,但是少到何种程度完全没有认识,最后思来想去还是看了题解,题解都是千篇一律的结论,并且没有人证明那是充要的,至多证明是必要的,做这个题就当涨见识了。
#include <bits/stdc++.h> using namespace std; const int maxn = + ;
int gra[maxn][maxn]; int m, t; int read() {
int q = ;
char ch = ' ';
while (ch<'' || ch>'') ch = getchar();
while ('' <= ch && ch <= '') {
q = q * + ch - '';
ch = getchar();
}
return q;
} bool solve() {
for (int i = ; i < m; i++) {
for (int j = ; j < m; j++) {
int f1 = , f2 = ;
for (int k = ; k < m; k++) {
if (gra[i][k] && gra[j][k]) f1 = ;
if (gra[i][k] ^ gra[j][k]) f2 = ;
if (f1 && f2) return false;
}
}
}
return true;
} int T = ; int main()
{
int iCase;
iCase = read();
while (iCase--) {
memset(gra, , sizeof(gra));
m = read(), t = read();
int u, v;
for (int i = ; i < t; i++) {
u = read(), v = read();
gra[u][v] = ;
} printf("Case #%d: ",T++);
if (solve()) printf("Yes\n");
else printf("No\n");
}
return ;
}