Given a string S, find the longest palindromic substring in S. You may assume that the maximum length of Sis 1000, and there exists one unique longest palindromic substring.
==
class Solution {
public:
string longestPalindrome(string s) {
/**bool dp[i][j]代表s[i-j]是否回文
dp[i][j] = true ;i==j
= s[i]==s[j] ;j=i+1
= (s[i]==s[j])&& dp[i+1][j-1]; j>i+1
要记住,dp[i][j]表示的i-j之间的字符串是不是回文,
当i==j时,dp[i][i]当然是回文
当j=i+1时,dp[i][j],要看字符串s[i]和s[j]之间是不是相同的?
当j>i+1时,dp[i][j]的判定情况,s[i]s[j]和dp[i+1][j-1]共同决定的; 怎么开始的?
外层循环j控制,
内存循环i判断当前能到达的位置是否是回文;
*/
int n = s.size();
bool dp[n][n];
fill_n(&dp[][],n*n,false);///初始化
int max_len = ;
int start = ; for(int j = ;j<s.size();j++){
for(int i = ;i<=j;i++){
if(i==j) dp[i][j] = true;
else if(j==(i+)) dp[i][j] = s[i]==s[j]?true:false;
else if(j>(i+)) dp[i][j] = s[i]==s[j]&&dp[i+][j-];
if(dp[i][j]&&max_len < (j-i+)){
max_len = j-i+;
start = i;
}
}///for
}
return s.substr(start,max_len);
}
};