GuGuFishtion HDU - 6390 (欧拉函数,容斥)

时间:2023-03-09 20:20:48
GuGuFishtion HDU - 6390 (欧拉函数,容斥)

GuGuFishtion

\[Time Limit: 1500 ms\quad Memory Limit: 65536 kB
\]

题意

给出定义\(Gu(a, b) = \frac{\phi(ab)}{\phi(a)\phi(b)}\)

求出\(\sum_{a=1}^{m}\sum_{b=1}^{n}Gu(a,b) (mod p)\)

思路

首先对于欧拉函数,我们知道欧拉函数的朴素式子为:\(\phi(n) = n*(1-\frac{1}{p1})*(1-\frac{1}{p2}) * ... * (1-\frac{1}{pn})\),\(pi\) 为 \(n\) 的质因子。

对于任意两个数 \(a,b\),令 \(g = gcd(a, b)\)

  1. 若 \(g != 1\),令 \(pi\) 为 \(a\) 特有的质因子,\(qi\) 为 \(b\) 特有的质因子,\(ti\) 为\(a,b\) 共有的质因子,那么将 \(Gu(a, b)\) 展开,就可以得到

\[\begin{aligned}
Gu(a, b) &= \frac{\phi(ab)}{\phi(a)\phi(b)}\\
&= \frac{ab \prod(1-\frac{1}{pi}) \prod(1-\frac{1}{ti}) \prod(1-\frac{1}{qi}) }{a \prod(1-\frac{1}{pi}) \prod(1-\frac{1}{ti}) b \prod(1-\frac{1}{qi})\prod(1-\frac{1}{ti})} \\
&= \frac{1}{\prod(1-\frac{1}{ti})}
\end{aligned}
\]

现在我们设 \(x\),\(x\) 包括了所有的 \(ti\),那么就有

\[\begin{aligned}
Gu(a, b) &= \frac{1}{\prod(1-\frac{1}{ti})} \\
&= \frac{x}{x\prod(1-\frac{1}{ti})} \\
&= \frac{x}{\phi(x)}
\end{aligned}
\]

\(x\) 也很好知道是多少,其实 \(g\) 就满足同时包括了所有 \(ti\) 的数,所以我们可以设 \(x = g\),就可以得到 \(Gu(a,b) = \frac{g}{\phi(g)}\)。

2. 若 \(g=1\),此时不存在 \(ti\),但这是 \(Gu(a, b)\) 展开后全部消掉了,所以答案为 \(1\),而 \(\frac{1}{\phi(1)}\) 也正好为 \(1\),所以也可以看成 \(Gu(a,b) = \frac{g}{\phi(g)}\)。

综合上述,\(Gu(a,b) = \frac{g}{\phi(g)}\)。

此时我们只要计算出 \(gcd(a, b) = x (a\in [1,m], b\in[1,n])\) 的对数,就可以直接计算答案了。

这里可以利用经典的莫比乌斯反演,也可以利用容斥原理。

令:

\(f(i)\) 表示 \(gcd\) 等于 \(i的倍数\) 的对数

\(g(i)\) 表示 \(gcd\) 等于 \(i\) 的对数

那么就有

\[f(i) = \lfloor\frac{m}{i}\rfloor \lfloor\frac{n}{i} \rfloor \\
g(i) = f(i) - \sum_{j=2}^{i*j<=min(n,m)} g(ij)
\]

如此倒着计算 \(g(i)\),就可以得出答案。

Hint

emmmm,这题其实有点卡常,要注意取模的次数和自然数逆元打表的姿势。

/***************************************************************
> File Name : a.cpp
> Author : Jiaaaaaaaqi
> Created Time : 2019年08月26日 星期一 16时58分58秒
***************************************************************/ #include <map>
#include <set>
#include <list>
#include <ctime>
#include <cmath>
#include <stack>
#include <queue>
#include <cfloat>
#include <string>
#include <vector>
#include <cstdio>
#include <bitset>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <unordered_map>
#define lowbit(x) x & (-x)
#define mes(a, b) memset(a, b, sizeof a)
#define fi first
#define se second
#define pb push_back
#define pii pair<int, int> typedef unsigned long long int ull;
typedef long long int ll;
const int maxn = 1e6 + 10;
const int maxm = 1e5 + 10;
const ll mod = 1e9 + 7;
const ll INF = 1e18 + 100;
const int inf = 0x3f3f3f3f;
const double pi = acos(-1.0);
const double eps = 1e-8;
using namespace std; ll n, m;
int cas, tol, T; int pri[maxn], phi[maxn];
bool ispri[maxn];
ll f[maxn], g[maxn], inv[maxn]; void handle() {
int mx = 1e6;
mes(ispri, 1);
tol = 0;
phi[1] = 1;
for(int i=2; i<=mx; i++) {
if(ispri[i]) {
pri[++tol] = i;
phi[i] = i-1;
}
for(int j=1; j<=tol&&i*pri[j]<=mx; j++) {
ispri[i*pri[j]] = 0;
if(i%pri[j] == 0) {
phi[i*pri[j]] = phi[i]*pri[j];
break;
} else {
phi[i*pri[j]] = phi[i]*(pri[j]-1);
}
}
}
} int main() {
// freopen("in", "r", stdin);
handle();
inv[1] = 1;
scanf("%d", &T);
while(T--) {
ll p;
scanf("%lld%lld%lld", &n, &m, &p);
ll x = min(n, m);
for(int i=2; i<=x; i++) inv[i] = (p-p/i)*inv[p%i]%p;
for(int i=1; i<=x; i++) f[i] = (n/i)*(m/i)%p;
for(int i=x; i>=1; i--) {
g[i] = f[i];
for(int j=2; i*j<=x; j++) {
g[i] -= g[i*j];
if(g[i]<0) g[i]+=p;
}
}
ll ans = 0;
for(int i=1; i<=x; i++) {
ans += 1ll*g[i]*i%p * inv[phi[i]]%p;
ans %= p;
}
printf("%lld\n", ans);
}
return 0;
}