A continued fraction of height n is a fraction of form . You are given two rational numbers, one is represented as
and the other one is represented as a finite fraction of height n. Check if they are equal.
Input
The first line contains two space-separated integers p, q (1 ≤ q ≤ p ≤ 1018) — the numerator and the denominator of the first fraction.
The second line contains integer n (1 ≤ n ≤ 90) — the height of the second fraction. The third line contains n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 1018) — the continued fraction.
Please, do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams or the %I64d specifier.
Output
Print "YES" if these fractions are equal and "NO" otherwise.
Examples
9 4
2
2 4
YES
9 4
3
2 3 1
YES
9 4
3
1 2 4
NO
Note
In the first sample .
In the second sample .
In the third sample .
思路:
可以用java的高精度类BigDecimal直接暴力模拟分式的递归运算过程,精度保留到30以上均可以AC
我的JAVA代码:
import java.math.*;
import java.util.Scanner;
public class Main { static long a[] = new long[500];
public static int n;
public static BigDecimal f(int index)
{
if(index==n)
return BigDecimal.valueOf(a[index]).divide(BigDecimal.ONE,45,BigDecimal.ROUND_HALF_DOWN);
else
return BigDecimal.valueOf(a[index]).add(BigDecimal.ONE.divide(f(index+1),45,BigDecimal.ROUND_HALF_DOWN));
}
public static void main(String[] args) {
Scanner cin = new Scanner(System.in);
BigDecimal p,q; p=cin.nextBigDecimal();
q=cin.nextBigDecimal();
n=cin.nextInt();
for(int i=1;i<=n;i++)
{
a[i]=cin.nextLong();
}
BigDecimal s1=p.divide(q,45,BigDecimal.ROUND_HALF_DOWN);
BigDecimal s2=f(1);
// System.out.println(s1);
// System.out.println(s2);
if(s1.equals(s2))
{
System.out.println("YES");
}else
{
System.out.println("NO");
} } }
还有C++数学解法:
把它上下翻转一下呢?
这样迭代下去,如果是相等的,那么右边一定是等于0的.
图来自这位大佬的博客:
https://blog.****.net/theArcticOcean/article/details/50429314
注意:
中间特判下分母为0的情况和中途出结果的情况
细节见代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#define rt return
#define dll(x) scanf("%I64d",&x)
#define xll(x) printf("%I64d\n",x)
#define sz(a) int(a.size())
#define all(a) a.begin(), a.end()
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-16
#define eps2 1e-15
#define gg(x) getInt(&x)
#define db(x) cout<<"== [ "<<x<<" ] =="<<endl;
using namespace std;
typedef long long ll;
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
ll powmod(ll a,ll b,ll MOD){ll ans=;while(b){if(b%)ans=ans*a%MOD;a=a*a%MOD;b/=;}return ans;}
inline void getInt(int* p);
const int maxn=;
const int inf=0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
ll p,q;
int n;
ll a[maxn];
int main()
{
dll(p);dll(q);
gg(n);
repd(i,,n)
{
dll(a[i]);
}
int flag=;
repd(i,,n)
{
if(q==||(p*1.0000000/q)<a[i])
{
flag=;
break;
}else
{
p-=q*a[i];
swap(p,q);
}
}
if(flag==&&q==)
{
printf("YES\n");
}else
{
printf("NO\n");
}
return ;
} inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '');
while ((ch = getchar()) >= '' && ch <= '') {
*p = *p * - ch + '';
}
}
else {
*p = ch - '';
while ((ch = getchar()) >= '' && ch <= '') {
*p = *p * + ch - '';
}
}
}