[FPGA]Verilog 60s秒表计时器(最大可计时间长达9min)

时间:2023-03-09 19:25:21
[FPGA]Verilog 60s秒表计时器(最大可计时间长达9min)

[FPGA]Verilog 60s秒表计时器

1.引述

这次的实验来自于本人本科课程数电结课时的自选题目。由于这次上传是后知后觉,学校已将小脚丫板子回收,所以在这篇文章中没法贴出代码结果的效果图了,但最终效果已经过测试,可放心食用。那么下面就贴上代码并略加讲解供大家参考。

2.分频模块

我们要实现一个秒表,自然要将实验板中的时钟脉冲clk分频为一个周期为1s的脉冲,已知小脚丫板子的晶振为12MHz。下面贴上分频模块的代码。

module divide #
( //parameter是verilog里参数定义
parameter WIDTH = , //计数器的位数,计数的最大值为 2**(WIDTH-1)
parameter N = 12_000_000 //分频系数,请确保 N<2**(WIDTH-1),否则计数会溢出
)
(
input clk, //clk频率为12MHz
input rst_n, //复位信号,低有效,
output clkout //输出信号,可以连接到LED观察分频的时钟
);
reg [WIDTH-:] cnt_p,cnt_n; //cnt_p为上升沿触发时的计数器,cnt_n为下降沿触发时的计数器
reg clk_p,clk_n; //clk_p为上升沿触发时分频时钟,clk_n为下降沿触发时分频时钟
//上升沿触发时计数器的控制
always @(posedge clk or negedge rst_n)
begin
if(!rst_n)
cnt_p <= 'b0;
else if(cnt_p == (N-))
cnt_p <= 'b0;
else
cnt_p <= cnt_p + 'b1; //计数器一直计数,当计数到N-1的时候清零,这是一个模N的计数器
end
//上升沿触发的分频时钟输出,如果N为奇数得到的时钟占空比不是50%;如果N为偶数得到的时钟占空比为50%
always @(posedge clk or negedge rst_n)
begin
if(!rst_n)
clk_p <= 'b0;
else if(cnt_p < (N>>)) //N>>1表示右移一位,相当于除以2取商
clk_p <= 'b0;
else
clk_p <= 'b1; //得到的分频时钟正周期比负周期多一个clk时钟
end
//下降沿触发时计数器的控制
always @(negedge clk or negedge rst_n)
begin
if(!rst_n)
cnt_n <= 'b0;
else if(cnt_n == (N-))
cnt_n <= 'b0;
else
cnt_n <= cnt_n + 'b1;
end
//下降沿触发的分频时钟输出,和clk_p相差半个clk时钟
always @(negedge clk or negedge rst_n)
begin
if(!rst_n)
clk_n <= 'b0;
else if(cnt_n < (N>>))
clk_n <= 'b0;
else
clk_n <= 'b1; //得到的分频时钟正周期比负周期多一个clk时钟
end
wire clk1 = clk; //当N=1时,直接输出clk
wire clk2 = clk_p; //当N为偶数也就是N的最低位为0,N[0]=0,输出clk_p
wire clk3 = clk_p & clk_n; //当N为奇数也就是N最低位为1,N[0]=1,输出clk_p&clk_n。正周期多所以是相与
assign clkout = (N==)? clk1:(N[]? clk3:clk2); //条件判断表达式
endmodule

3.八位数码管显示模块

小脚丫板子上有两个八位数码管显示,本实验中用来显示从00s到59s的显示。下面贴上数码管显示模块的代码。

module segment
(
input wire [:] seg_data_1, //四位输入数据信号
input wire [:] seg_data_2, //四位输入数据信号
output wire [:] segment_led_1, //数码管1,MSB~LSB = SEG,DP,G,F,E,D,C,B,A
output wire [:] segment_led_2 //数码管2,MSB~LSB = SEG,DP,G,F,E,D,C,B,A
);
reg[:] seg [:]; //存储7段数码管译码数据
initial
begin
seg[] = 'h3f; // 0
seg[] = 'h06; // 1
seg[] = 'h5b; // 2
seg[] = 'h4f; // 3
seg[] = 'h66; // 4
seg[] = 'h6d; // 5
seg[] = 'h7d; // 6
seg[] = 'h07; // 7
seg[] = 'h7f; // 8
seg[] = 'h6f; // 9
seg[]= 'h77; // A
seg[]= 'h7C; // b
seg[]= 'h39; // C
seg[]= 'h5e; // d
seg[]= 'h79; // E
seg[]= 'h71; // F
end
assign segment_led_1 = seg[seg_data_1];
assign segment_led_2 = seg[seg_data_2];
endmodule

4.功能讲解

在主模块中除了要例化上述的两个模块之外,还需给这个秒表添砖加瓦一下!标题中提到这是一个60s秒表,而我们数码管显示只从00到59,但最大计时量程却达到了9min,这是怎么办到的呢?这里我们就用到了小脚丫上的一排八位LED灯,每当计到59s时,下一秒数码管显示回到00,点亮八位LED灯中的一个,达到表示已计过了1min的作用。一共有八位LED灯,当八个灯都被点亮后,数码管还有一次从00到59的显示机会,这样我们就的得到了一个最大计时量程为9min的秒表啦!下面贴上八位LED灯显示部分的代码。

always@(posedge clk)
if(cnt1=='b0)
LED[:]<='b11111111;
else if(cnt1=='b0001)
LED[:]<='b11111110;
else if(cnt1=='b0010)
LED[:]<='b11111100;
else if(cnt1=='b0011)
LED[:]<='b11111000;
else if(cnt1=='b0100)
LED[:]<='b11110000;
else if(cnt1=='b0101)
LED[:]<='b11100000;
else if(cnt1=='b0110)
LED[:]<='b11000000;
else if(cnt1<='b0111)
LED[:]<='b10000000;
else if(cnt1<='b1000)
LED[:]<='b00000000;

此外作为一个秒表自然就要有暂停和开始计时的功能(当然清零功能也是有哒!主模块中就用rst复位键来实现,这里不多赘述。)暂停和开始计时这里我就用同一个按键实现。小脚丫板子上还有两个RGB三色灯,既然有这么好的资源存在,我们就要物尽其用!按下开始计时键时,秒表开始计时,数码管显示开始变化,此处我们让RGB三色灯中的一个等亮绿灯,表示处于正常计时状态中;当再次按键开启键时,秒表暂停,我们让另一个RGB三色灯亮红色,表示处于暂停状态。下面贴上包含三色灯点亮的部分代码。

always @(posedge clk1h or negedge rst) //产生60进制计数器
begin //数码管显示要按照十进制的方式显示
if(!rst)
begin
cnt <= 'h00; //复位初值显示00
cnt1<='b0;
end
else if(flag)
begin
G_LED2<='b0;
R_LED1<='b1;
if(cnt[:] == 'd9) //个位满九?
begin
cnt[:] <= 'd0; //个位清零
if(cnt[:] == 'd5 ) //十位满五?
begin
cnt[:] <= 'd0; //十位清零
cnt1<=cnt1+;
end
else
begin
cnt[:] <= cnt[:] + 'b1; //十位加一
cnt1<=cnt1;
end
end
else cnt[:] <= cnt[:] + 'b1; //个位加一
end
else
begin
cnt <= cnt;
G_LED2<='b1;
R_LED1<='b0;
end
end

5.主模块

最后贴上主模块的代码,完成整个秒表的实现。

module counter60
(
input clk,rst, //时钟和复位输入
input key, //启动暂停按键
output wire [:] segment_led_1,segment_led_2, //数码管输出
output reg [:] LED, //八位LED灯
output reg R_LED1,G_LED2 //RGB三色灯,此处用红色表示处于暂停状态中,绿色表示处于正常计时中
);
wire clk1h; //1秒时钟
reg [:] cnt; //计时计数器
reg [:] cnt1; //分钟计数器
reg flag; //启动暂停标志 divide # //例化分频器产生1秒时钟信号
(
.WIDTH(),
.N(12_000_000)
) u1
(
.clk(clk),
.rst_n(rst),
.clkout(clk1h)
);
segment u2 //例化数码管显示模块
(
.seg_data_1 (cnt[:]), //seg_data input
.seg_data_2 (cnt[:]), //seg_data input
.segment_led_1 (segment_led_1), //MSB~LSB = SEG,DP,G,F,E,D,C,B,A
.segment_led_2 (segment_led_2) //MSB~LSB = SEG,DP,G,F,E,D,C,B,A
);
always @(posedge clk or negedge rst) //产生标志信号
begin
if(!rst)
flag = 'b0;
else if(!key)
begin
flag = ~flag;
end
else
begin
flag = flag;
end
end
always @(posedge clk1h or negedge rst) //产生60进制计数器
begin //数码管显示要按照十进制的方式显示
if(!rst)
begin
cnt <= 'h00; //复位初值显示00
cnt1<='b0;
end
else if(flag)
begin
G_LED2<='b0;
R_LED1<='b1;
if(cnt[:] == 'd9) //个位满九?
begin
cnt[:] <= 'd0; //个位清零
if(cnt[:] == 'd5 ) //十位满五?
begin
cnt[:] <= 'd0; //十位清零
cnt1<=cnt1+;
end
else
begin
cnt[:] <= cnt[:] + 'b1; //十位加一
cnt1<=cnt1;
end
end
else cnt[:] <= cnt[:] + 'b1; //个位加一
end
else
begin
cnt <= cnt;
G_LED2<='b1;
R_LED1<='b0;
end
end
always@(posedge clk)
if(cnt1=='b0)
LED[:]<='b11111111;
else if(cnt1=='b0001)
LED[:]<='b11111110;
else if(cnt1=='b0010)
LED[:]<='b11111100;
else if(cnt1=='b0011)
LED[:]<='b11111000;
else if(cnt1=='b0100)
LED[:]<='b11110000;
else if(cnt1=='b0101)
LED[:]<='b11100000;
else if(cnt1=='b0110)
LED[:]<='b11000000;
else if(cnt1<='b0111)
LED[:]<='b10000000;
else if(cnt1<='b1000)
LED[:]<='b00000000;
endmodule module divide #
( //parameter是verilog里参数定义
parameter WIDTH = , //计数器的位数,计数的最大值为 2**(WIDTH-1)
parameter N = 12_000_000 //分频系数,请确保 N<2**(WIDTH-1),否则计数会溢出
)
(
input clk, //clk频率为12MHz
input rst_n, //复位信号,低有效,
output clkout //输出信号,可以连接到LED观察分频的时钟
);
reg [WIDTH-:] cnt_p,cnt_n; //cnt_p为上升沿触发时的计数器,cnt_n为下降沿触发时的计数器
reg clk_p,clk_n; //clk_p为上升沿触发时分频时钟,clk_n为下降沿触发时分频时钟
//上升沿触发时计数器的控制
always @(posedge clk or negedge rst_n)
begin
if(!rst_n)
cnt_p <= 'b0;
else if(cnt_p == (N-))
cnt_p <= 'b0;
else
cnt_p <= cnt_p + 'b1; //计数器一直计数,当计数到N-1的时候清零,这是一个模N的计数器
end
//上升沿触发的分频时钟输出,如果N为奇数得到的时钟占空比不是50%;如果N为偶数得到的时钟占空比为50%
always @(posedge clk or negedge rst_n)
begin
if(!rst_n)
clk_p <= 'b0;
else if(cnt_p < (N>>)) //N>>1表示右移一位,相当于除以2取商
clk_p <= 'b0;
else
clk_p <= 'b1; //得到的分频时钟正周期比负周期多一个clk时钟
end
//下降沿触发时计数器的控制
always @(negedge clk or negedge rst_n)
begin
if(!rst_n)
cnt_n <= 'b0;
else if(cnt_n == (N-))
cnt_n <= 'b0;
else
cnt_n <= cnt_n + 'b1;
end
//下降沿触发的分频时钟输出,和clk_p相差半个clk时钟
always @(negedge clk or negedge rst_n)
begin
if(!rst_n)
clk_n <= 'b0;
else if(cnt_n < (N>>))
clk_n <= 'b0;
else
clk_n <= 'b1; //得到的分频时钟正周期比负周期多一个clk时钟
end
wire clk1 = clk; //当N=1时,直接输出clk
wire clk2 = clk_p; //当N为偶数也就是N的最低位为0,N[0]=0,输出clk_p
wire clk3 = clk_p & clk_n; //当N为奇数也就是N最低位为1,N[0]=1,输出clk_p&clk_n。正周期多所以是相与
assign clkout = (N==)? clk1:(N[]? clk3:clk2); //条件判断表达式
endmodule module segment
(
input wire [:] seg_data_1, //四位输入数据信号
input wire [:] seg_data_2, //四位输入数据信号
output wire [:] segment_led_1, //数码管1,MSB~LSB = SEG,DP,G,F,E,D,C,B,A
output wire [:] segment_led_2 //数码管2,MSB~LSB = SEG,DP,G,F,E,D,C,B,A
);
reg[:] seg [:]; //存储7段数码管译码数据
initial
begin
seg[] = 'h3f; // 0
seg[] = 'h06; // 1
seg[] = 'h5b; // 2
seg[] = 'h4f; // 3
seg[] = 'h66; // 4
seg[] = 'h6d; // 5
seg[] = 'h7d; // 6
seg[] = 'h07; // 7
seg[] = 'h7f; // 8
seg[] = 'h6f; // 9
seg[]= 'h77; // A
seg[]= 'h7C; // b
seg[]= 'h39; // C
seg[]= 'h5e; // d
seg[]= 'h79; // E
seg[]= 'h71; // F
end
assign segment_led_1 = seg[seg_data_1];
assign segment_led_2 = seg[seg_data_2];
endmodule

6.总结

到这里整个秒表就完成啦。最后再次向读者们道歉,不能贴上实验效果图了。身边有实验板的读者们可以将代码烧录进板子观察现象。本人编程水平、时间有限,这篇文章到这里就要结束啦,欢迎广大读者评论留言,更欢迎大家指出本人的不足,希望能通过交流自身得到提高。最后感谢大家的耐心阅读!