题意:求
解:
最后一步转化是因为phi * I = Id,故Id * miu = phi
第二步是反演,中间省略了几步...
然后就这样A了......最终式子是个整除分块,后面用杜教筛求一下phi前缀和即可。
#include <cstdio>
#include <map> typedef long long LL;
const int N = , T = ;
const LL MO = ; int p[N], top, phi[N];
LL Phi[N], inv2;
bool vis[N];
std::map<LL, LL> mp; inline void getp(int n) {
phi[] = ;
for(int i = ; i <= n; i++) {
if(!vis[i]) {
p[++top] = i;
phi[i] = i - ;
}
for(int j = ; j <= top && i * p[j] <= n; j++) {
vis[i * p[j]] = ;
if(i % p[j] == ) {
phi[i * p[j]] = phi[i] * p[j];
break;
}
phi[i * p[j]] = phi[i] * (p[j] - );
}
}
for(int i = ; i <= n; i++) {
Phi[i] = (Phi[i - ] + phi[i]) % MO;
}
return;
} LL getPhi(LL x) {
if(x <= ) return ;
if(x <= T) return Phi[x];
if(mp.count(x)) return mp[x];
LL ans = (x + ) % MO * (x % MO) % MO * inv2 % MO;
for(LL i = , j; i <= x; i = j + ) {
j = x / (x / i);
ans -= (j - i + ) % MO * getPhi(x / i) % MO;
ans %= MO;
}
return mp[x] = (ans + MO) % MO;
} int main() {
LL n;
getp(T);
inv2 = (MO + ) / ;
scanf("%lld", &n);
LL ans = ;
for(LL i = , j; i <= n; i = j + ) {
j = n / (n / i);
LL temp = (n / i) % MO;
ans += temp * temp % MO * (getPhi(j) - getPhi(i - ) + MO) % MO;
ans %= MO;
}
printf("%lld\n", (ans + MO) % MO);
return ;
}
AC代码