[HDU4362] Palindrome subsequence (区间DP)

时间:2023-03-09 18:37:19
[HDU4362] Palindrome subsequence (区间DP)

题目链接

题目大意

给你几个字符串 (1<len(s)<1000) ,要你求每个字符串的回文序列个数.对于10008取模.

Solution

区间DP。

比较典型的例题。

状态定义:

令 \(f[i][j]\) 表示 \(i\) 到 \(j\) 的回文序列个数,\(s\) 为给出的字符串.

状态转移:

  1. \(s[i]\neq s[j]\)

    那么此时 \(f[i][j]\) 即为\(f[i][j-1]\),\(f[i+1][j]\)之和.

    但由于 \(i+1->j-1\)的我们明显重复统计了,所以方程即为:

\[f[i][j]=f[i+1][j]+f[i][j-1]-f[i+1][j-1]
\]


2. $s[i]=s[j]$
此时考虑,对于 $i+1$ 到 $j-1$ 每一个回文序列,我们都可以把 $s[i]$和$s[j]$ 加在两边.同时还多了 $s[i],s[j]$ 这个序列.
所以此时方程即为:
$$f[i][j]=f[i+1][j]+f[i][j-1]+1$$

### Code
```cpp
#include
using namespace std;
const int maxn=1008;
const int mod=10007;
int f[maxn][maxn];
int n,t;
char s[maxn];

int main()

{

cin>>t;

for(int k=1;k<=t;k++)

{

scanf("%s",s);

n=strlen(s);

memset(f,0,sizeof(f));

for(int i=0;i<n;i++)

{

f[i][i]=1;

if(i<n-1)

if(s[i]s[i+1])

f[i][i+1]=3;

else f[i][i+1]=2;

}

for(int len=3;len<=n;len++)

for(int l=0;l<=n-len;l++)

{

int r=l+len-1;

if(s[l]s[r])

f[l][r]=(f[l][r-1]+f[l+1][r]+1)%mod;

else

f[l][r]=(f[l][r-1]+f[l+1][r]-f[l+1][r-1]+mod)%mod;

}

printf("Case %d: %d\n",k,f[0][n-1]);

}

}