Time Limit: 10 Sec Memory Limit: 32 MB
Submit: 1304 Solved: 439
Description
给定n个字符串(S1,S2,„,Sn),要求找到一个最短的字符串T,使得这n个字符串(S1,S2,„,Sn)都是T的子串。
Input
第一行是一个正整数n(n<=12),表示给定的字符串的个数。以下的n行,每行有一个全由大写字母组成的字符串。每个字符串的长度不超过50.
Output
只有一行,为找到的最短的字符串T。在保证最短的前提下,如果有多个字符串都满足要求,那么必须输出按字典序排列的第一个。
Sample Input
2
ABCD
BCDABC
ABCD
BCDABC
Sample Output
ABCDABC
HINT
Source
暴力+状压:http://www.cnblogs.com/SilverNebula/p/6445487.html
AC自动机+BFS
这其实是我看到这题时最先有的思路,然而看到数据范围明显是为了状压设的,就写状压了。之后发现确实有AC自动机的解法,那么果断学习一发。
(其实也需要状压)先建好AC自动机,标记好每个结点对应的包含串状态,然后从根节点开始BFS(BFS保证串最短),在每个状态从A到Z依次尝试扩展状态(保证字典序最小)
实际跑出来不比普通状压慢多少(大概是因为我的普通状压跑得太慢233)
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
using namespace std;
const int mxn=;
int L1[mxn*(<<)],L2[mxn*(<<)];
queue<int>q1,q2;
bool vis[mxn][(<<)];
int n;
int ans[mxn],num=;
struct ACa{
int t[mxn][];
int fail[mxn];
int end[mxn];
int S,cnt;
int q[],hd,tl;
void init(){S=cnt=;memset(end,,sizeof end);return;}
void insert(char *s,int id){
int len=strlen(s),now=S;
for(int i=;i<len;i++){
if(!t[now][s[i]-'A'])t[now][s[i]-'A']=++cnt;
now=t[now][s[i]-'A'];
}
end[now]|=(<<id);
}
void Build(){
hd=;tl=;
for(int i=;i<;i++)
if(t[S][i]){q[++tl]=t[S][i];fail[t[S][i]]=S;}
else t[S][i]=S;
while(hd<=tl){
int u=q[hd++];
int v,r;
for(int i=;i<;i++){
if(t[u][i]){
fail[t[u][i]]=t[fail[u]][i];
end[t[u][i]]|=end[t[fail[u]][i]];
q[++tl]=t[u][i];
}
else t[u][i]=t[fail[u]][i];
}
}
return;
}
void solve(){
hd=;tl=;int ed=(<<n)-;
q1.push(S),q2.push();
while(hd<=tl){
int u=q1.front();q1.pop();
int e=q2.front();q2.pop();
// printf(" e:%d\n",e);
if(e==ed){//结束状态
for(;hd>;hd=L2[hd]){ans[++num]=L1[hd];}
for(int i=num;i;i--)printf("%c",ans[i]+'A');
return;
}
for(int i=;i<;i++){
if(!vis[t[u][i]][e|end[t[u][i]]]){
L1[++tl]=i;
L2[tl]=hd;
q1.push(t[u][i]);
q2.push(e|end[t[u][i]]);
vis[t[u][i]][e|end[t[u][i]]]=;
}
}
hd++;
}
}
}ac;
char s[];
int main(){
int i,j;
scanf("%d",&n);
ac.init();
for(i=;i<n;i++)scanf("%s",s),ac.insert(s,i);
// for(i=1;i<=ac.cnt;i++)if(ac.end[i])printf("%d %d\n",i,ac.end[i]);
ac.Build();
ac.solve();
return ;
}