这四个使用DFS来求解所有组合和排列的例子很有代表性,这里做一个总结:
1.不带重复元素的子集问题
public ArrayList<ArrayList<Integer>> subsets(int[] nums) {
// write your code here
ArrayList<ArrayList<Integer>> results = new ArrayList<>();
if (nums == null || nums.length == 0) {
return results;
}
Arrays.sort(nums);
DFS(results, new ArrayList<Integer>(), nums, 0);
return results;
}
public void DFS(ArrayList<ArrayList<Integer>> results, ArrayList<Integer> cur,
int[] nums, int start) {
results.add(new ArrayList<Integer>(cur));
for (int i = start; i < nums.length; i++) {
cur.add(nums[i]);
DFS(results, cur, nums, i+1);
cur.remove(cur.size()-1);
}
}
2.带重复元素的子集问题
public ArrayList<ArrayList<Integer>> subsetsWithDup(ArrayList<Integer> S) {
// write your code here
ArrayList<ArrayList<Integer>> results = new ArrayList<>();
if (S == null || S.size() == 0) {
return results;
}
Collections.sort(S);
DFS(results, new ArrayList<Integer>(), S, 0);
return results;
}
public void DFS(ArrayList<ArrayList<Integer>> results,
ArrayList<Integer> cur,
ArrayList<Integer> S,
int start) {
results.add(new ArrayList<>(cur));
for (int i = start; i < S.size(); i++) {
if(i != start && S.get(i) == S.get(i - 1)) {
continue;
}
cur.add(S.get(i));
DFS(results, cur, S, i+1);
cur.remove(cur.size()-1);
}
}
3.不带重复元素的全排列问题
public List<List<Integer>> permute(int[] nums) {
// write your code here
List<List<Integer>> results = new ArrayList<List<Integer>>();
if (nums == null || nums.length == 0) {
results.add(new ArrayList<Integer>());
return results;
}
boolean[] used = new boolean[nums.length];
DFS(results, new ArrayList<Integer>(), nums, used);
return results;
}
public void DFS(List<List<Integer>> results, List<Integer> cur, int[] nums, boolean[] used) {
if (cur.size() == nums.length) {
results.add(new ArrayList<Integer>(cur));
return;
}
for(int i = 0; i<nums.length; i++) {
if (used[i]) {
continue;
}
used[i] =true;
cur.add(nums[i]);
DFS(results, cur, nums, used);
used[i] =false;
cur.remove(cur.size()-1);
}
}
4.带重负元素的全排列问题
public List<List<Integer>> permuteUnique(int[] nums) {
// Write your code here
List<List<Integer>> results = new ArrayList<List<Integer>>();
if (nums == null || nums.length == 0) {
results.add(new ArrayList<Integer>());
return results;
}
Arrays.sort(nums);
boolean[] used = new boolean[nums.length];
DFS(results, new ArrayList<Integer>(), used, nums);
return results;
}
public void DFS(List<List<Integer>> results, List<Integer> cur, boolean[] used, int[] nums) {
if (cur.size() == nums.length) {
results.add(new ArrayList<Integer>(cur));
return;
}
for (int i = 0; i < nums.length; i++) {
if (used[i]) {
continue;
}
if (i > 0 && nums[i] == nums[i - 1] && !used[i-1]) {
continue;
}
used[i] = true;
cur.add(nums[i]);
DFS(results, cur, used, nums);
used[i] = false;
cur.remove(cur.size() -1);
}
}
寻找丢失的数 II*
给一个由 1 - n
的整数随机组成的一个字符串序列,其中丢失了一个整数,请找到它。
回溯,当前位置可以单独,也可以和下一个结合,当前为0一定不行。curIndex控制啥时候结束。
public int findMissing2(int n, String str) {
// Write your code here
if (n < 1 || str == null) {
return 0;
}
char[] chars = str.toCharArray();
boolean[] appeared = new boolean[n + 1];
int[] curIndex = {0};
help(appeared, chars, curIndex, n);
for (int i = 1; i < appeared.length; i++) {
if (!appeared[i]) {
return i;
}
}
return -1;
}
public void help(boolean[] appeared, char[] chars, int[] curIndex, int n) {
if (curIndex[0] >= chars.length) {
return;
}
if (chars[curIndex[0]] == '0') {
return;
}
if (!appeared[chars[curIndex[0]] - '0']) {
appeared[chars[curIndex[0]] - '0'] = true;
curIndex[0]++;
help(appeared, chars, curIndex, n);
if (curIndex[0] >= chars.length) {
return;
}
curIndex[0]--;
appeared[chars[curIndex[0]] - '0'] = false;
}
if (curIndex[0] < chars.length - 1) {
int c1 = chars[curIndex[0]] - '0';
int c2 = chars[curIndex[0] + 1] - '0';
int newnum = c1 * 10 + c2;
if (newnum <= n && !appeared[newnum]) {
appeared[newnum] = true;
curIndex[0] += 2;
help(appeared, chars, curIndex, n);
if (curIndex[0] >= chars.length) {
return;
}
curIndex[0]-=2;
appeared[newnum] = false;
}
}
}